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Abstract

Mitigating traffic congestion on urban roads, with paramount importance in the urban develop-
ment, reduction of energy consumption and air pollution, depends on our ability to foresee road
usage and traffic condition pertaining to the collective behavior of drivers, raising a significant
question: to what degree is road traffic predictable in urban areas? Here we rely on the precise
record of daily vehicle mobility based on GPS devices installed in taxis to uncover the potential
daily predictability of urban traffic patterns. Using the mapping from the degree of congestion
on roads into a time series of symbols and measuring its entropy, we find a relatively high daily
predictability of traffic condition despite the absence of any a priori knowledge of drivers’ origins
and destinations and quite different travel patterns between weekdays and weekends. Moreover,
we find a counterintuitive dependence of the predictability on travel speed: the road segment as-
sociated with intermediate average travel speed is most difficult to be predicted. We also explore
the possibility of recovering the traffic condition of an inaccessible segment from its adjacent seg-
ments with respect to limited observability. The highly predictable traffic patterns in spite of the
heterogeneity of drivers’ behaviors and the variability of their origins and destinations enable the
development of accurately predictive models for eventually devising practical strategies to mitigate
urban road congestion.



The past decades have witnessed a rapid development of modern society accompanied
with an increasing demand for mobility in metropolises [1-4], accounting for conflict be-
tween the limits of road capacity and the increment of traffic demand reflected by severe
traffic congestions [5, 6]. Induced by such problems, citizens suffer from reduction of travel
efficiency, increase of both fuel consumption [7] and air pollution [8] related with vehicle
emission. For instance, in recent years, a number of major cities in China have frequently
experienced persistent haze, raising the need of better traffic management to mitigate con-
gestion that is likely one of the main factors for the pollution [9, 10]. Despite much effort
dedicated to addressing the problems of traffic jam [11], urban planning [12, 13] and traffic
prediction [14-16], we still lack a comprehensive understanding of the dynamical behaviors
of urban traffic. The difficulty stems from two factors: the lack of systematic and accurate
data in conventional researches based on travel surveys and the diversity of drivers’ complex
self-adaptive behaviors in making routing choice decision [17]. Fortunately, “big data” as
the inevitable outcome in the information era opens new routes to reinvent urban traffic sys-
tems and offer solutions for increasingly serious traffic jams [18]. In this light, mobile phone
data have been employed to explore road usage patterns in urban areas [19-21]. However,
to eventually implement control on road traffic, predict traffic condition is the prerequisite,
which prompts us to wonder, to what degree traffic flow on complex road network is pre-
dictable with respect to high self-adaptivity of drivers and without a priori knowledge of
their origins and destinations.

In this paper, we for the first time explore the predictability of urban traffic and con-
gestion by using comprehensive records of Global Position System (GPS) devices installed
in vehicles. The data provide the velocity and locations of a large number of taxis in real
time, enabling investigation and quantification of the predictability of segments in main
roads in an urban road network. In particular, we establish a mapping from the degree of
congestion on a segment of road into a time series of symbols, which allows us to exploit
tools in the information theory, such as entropy [22] and Fano’s inequality [23] to measure
the predictability of traffic condition on a segment of road. Our methodology is inspired by
the seminal work of Song et al. who incorporate information theory into time series analysis
to measure the limited predictability of individual mobility [24]. Our main contribution is
that we extend the tools of time series analysis to the collective dynamics of road traffic
rather than at the individual level, by mapping the vehicle records from GPS into road
usage so as to offer the predictability of traffic condition at different locations. In contrast
to the traditional way based on origin-destination analysis [25], our approach relies only on
short-time historical record of traffic condition without the need of a priori knowledge of
drivers’ origins and destinations and their associated navigation strategies. Our accessibil-
ity of such individual-level information is inherently limited by the diversity in population,
job switching, moving and urbanization. Our research gives rise to a number of interesting
findings, including relatively high daily predictability of traffic condition in the three Ring
Roads in Beijing [26] despite quite different travel patterns at the weekends compared to
working days, the non-monotonic dependence of the predictability on vehicle velocity and
the recoverability of the traffic condition of an inaccessible segment by the information of
its adjacent observable segments. Thus we present a general and practical approach for
understanding the predictability of real time urban road traffic and for devising effective
control strategies to improve the roads’ level of service.



I. RESULTS

We explore the predictability of traffic condition by using the GPS records of more than
20000 taxis in Beijing, China, (see Methods for data description and processing). We focus
on the three Ring Roads, the 2nd, 3rd and 4th Rings in Beijing by mapping the states
of vehicles into the traffic condition on the roads. The three rings bear the most heavy
traffic burden in Beijing and the data records pertaining to them with high frequency are
sufficient for quantifying their traffic condition. In particular, we divide each ring into
a number of segments with given segment length AL, and measure the traffic condition
of each segment by the average velocity of vehicles. To simplify our study, we discretize
the average velocity of the segments in the range from Okm/h to the speed limit 100km/h
with a certain speed level interval AV, e.g., 10km/h. Thus, the mapping gives rise to a
time series of discrete states of speed for each road segment, which allows us to do some
analysis of discrete time series to reveal intrinsic traffic patterns. The dynamical behavior
of a whole ring can then be quantified by that of all segments of it. Figure 1 shows the
transition probabilities between different ranges of speed, namely, speed states. We find
that on average, a speed state is more likely to remain unchanged or shift to its nearby
states rather than change to a distant state. These observations imply the existence of a
potentially stable transition pattern that may facilitate the prediction of traffic condition
and congestion from historical records.

We exploit information entropy [22] to quantify the uncertainty of speed transition and
the degree of predictability characterizing the time series of the speed at each segmen-
t. By following Ref. [24], we assign three entropy measures to each road segment’s traf-
fic pattern: (i) Random Entropy S"d. Random entropy is defined as Sf'd = log, N;
where NV; is the number of distinct states, or speed levels, reached by road segment 7. (i-
i) Temporal-uncorrelated Entropy Si™°. Temporal-uncorrelated entropy is defined as S}™° =
— Zjvzl pi(j) log, pi(j), where p;(7) is the probability that the state j is reached by the road
segment 4. (iii) Actual Entropy S;. Actual entropy is defined as — > v P(T})log,[P(T})],
where T; = {X1, X5, ..., X1} denotes the sequence of states road seglment ¢ reached in ob-
servation. P(T)) is the probability of finding the time-ordered subsequence T} in the state
transition sequence of the segment 4. It is noteworthy that the random entropy Sr**? reflects
the degree of predictability of a road segment’s state transition based on the assumption
that each state is visited with equal probability. For the temporal-uncorrelated entropy
Spne. it takes the heterogeneity in the probability into account, but omits the order of the
transition. In contrast, the actual entropy 5; by considering both heterogeneous probability
and temporal correlation offers more realistic characterization of the traffic pattern.

The sufficient data with high record frequency on the three ring roads allow us to calculate
the actual entropy S; that in principle requires a continuous record of a road segment’s
momentary state. As shown in Fig. 2(a), we can see remarkable difference between P(5)
and P(S™). To be concrete, S™ peaks at about 2.6, indicating that on average each
update of the speed state represents 2.6 bits per hour new information. In other words, the
new speed level could be found in average 225 ~ 6 states. In contrast, the fact that P(S) of
the actual entropy peaks at S = 0.9 demonstrates that the real uncertainty in a segment’s
speed state is 209 ~ 1.87 rather than 6.

The entropy of a segment’s speed allows us to measure the predictability II that a suitable
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FIG. 1: Transition probability of speed states. (a)-(c) Transition probability between dif-
ferent speed states in the 2nd (a), 3rd (b) and 4th Ring Roads of Beijing. The speed V' between
10km/h and 70km/h is divided into 6 states with equal speed interval AV = 10km/h. Due to
rare observations for V' > 70km/h, they are set to be two states respectively, without any further
partitions. For each Ring Road, the result is obtained by averaging over all road segments with
equal length AL = 1km. We see that for each state, remaining unchanged and shifting to its
adjacent states constitute a very large proportion, implying a potential stable regulation in the
traffic patterns.

predictive algorithm can correctly predict the segment’s future speed state. In analogy with
Ref.[24], the predictability measure is subject to Fano’s inequality. Specifically, if the speed
level of a single road segment is updated in N states with the time, then its predicability
IT < II™*(S, N), where II™** could be acquired by solving

S = H(IT™) 4+ (1 — II"™*™) logy (N — 1),
where H (IT™**) represents the binary entropy function, namely
H (M) = =11 log,y (TT™*) — (1 — IT™*) log,y (1 — ITM#).

For a road segment with II"** = 0.1, we could predict its state transition accurately only
in 10% of the cases. An equivalent statement is that 10% is the upper bound of probability
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FIG. 2: Distributions of entropy and probability II. (a) The distribution of the random
entropy S™%4 the uncorrelated entropy S""¢ and the entropy S; of road segments in the 2nd
Ring Road in Beijing. (b) The distribution of the II**¢, the IT""° and the IT™** across all road
segments. The road segments are of identical length AL = 1km and the interval of speed state is
AV = 10km/h. The 3rd and 2th Ring Roads show similar results of P(S) and P(II) to that of the
2nd Ring Roads.

for any algorithms attempting to predict the segment’s speed state transition. Since we
calculates II™# base on S™d Su¢ and S, the result is encouraging. We found that under
the condition where AL = 1km and AV = 20km/h, the predicability of the 2nd Ring Road
segments is narrowly peaked approximately at 0.83, indicating that it is theoretically possible
to predict the transition of speed status in 83% of the cases. This high predictability with
bounded distribution indicates that, despite the diversity of drivers’ origins, destinations,
their routing decisions and adaptive behaviors, strikingly the traffic pattern as a collective
behavior of a large number of drivers is of high degree of potential predictability exclusively
from the historical records of daily traffic patterns in the absence of any individual level
information. We have also explored the maximum predictability IT1""¢ and IT'*"? based on
S and S04 as shown in Fig. 2(b). We see that both maxima in P(I1") and P(II*and)
are much lower than that of P(II™*), manifesting that II™** is a much better predictive tool
that the other two and the temporal order of traffic pattern contains significant information
for precisely predicting future patterns.

We further explore how the settings of the road segment length AL and speed level inter-
val AV affect the predictability. As shown in Fig. 3, except very small AV and very short
AL, quite high average predictability is observed. This provides strong evidence for the
generally high predictability of traffic condition of the three ring roads. Figure. 3 also shows
that the predictability decreases with decrease of road segment length and speed level inter-
val. Because the shorter road segment length and smaller speed level interval mean higher
prediction granularity, the phenomenon that higher prediction accuracy corresponds lower
predictability limit meets the intuition. The relatively low predictability for extreme cases
is ascribed to the relatively big fluctuations in the average speed resulted from insufficient
records. For example, for a road segment with very short length, the probability of finding a
taxi in it within a certain time interval will be low. In other words, in this scenario, the data
record of taxis will become insufficient to capture the actual average speed in the segment,
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FIG. 3: Predictability of the three Ring Roads. (a)-(c) The dependence of the maximum
value TI™* on AL and AV for the 2nd (a), the 3rd (b) and the 4th (c) Ring Road. The color
bars represent the values of II"™#*, The results for each Ring Road are the average over all road
segments in the Ring Road.
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FIG. 4: Local predictability and average speed. (a) The local predictability of road segments
in the three Ring Roads. (b) The local average speed of road segments in the three Ring Roads.
In (a), the color bar represents the maximum value II™** of road segments and In (b), the color
bar represents the average speed of road segments.

accounting for the big fluctuation of speed and inaccurate reflection of the traffic pattern
in the segment. Similarly, for small AV, the insufficient data subject to each speed state
is incapable of characterizing the real situation, leading to the specious low predictability.
Nevertheless, based on our findings, insofar as the records are adequate to measure traffic
conditions, the traffic pattern is highly predictable, regardless of the settings of the road
segment length and speed interval.

Although the traffic pattern of the three ring roads on average is highly predictable, there
are certain variations between different segments. Figure 4(a) shows the local predictability
of each segment on the map. We find that the local predictability is correlated with the
average local speed (Fig. 4(b)), prompting us to investigate the correlation between them.
Interestingly, we observe a non-monotonic correlation between the local predictability and
average speed with the lowest predictability arising at intermediate speed, as shown in
Fig. 5(a) and 5(b). As a result, we also find that it is most difficult to predict the traffic
condition of the 3rd ring road, due to its intermediate average speed compared to the 2nd
and 4th ring roads. A heuristic explanation for this phenomenon can be provided with
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FIG. 5: Relationship between predictability and average speed. (a) Predictability as
measured by II"™#* as a function of the average speed for the three Ring Roads. (b) Box plots of
the predictability in different ranges of the average speed. (c) The predictability and the average
speed of each entire Ring Road. The results are obtained for AL = 1Km and AV = 10km/h. The
bars represent mean predictability of 2nd, 3rd and 4th ring roads.

respect to the variational direction of speed. Suppose that in a segment all the vehicles is
fully stopped because of heavy congestion. One minute later, remaining stopped or starting
to pull away are the only two possible situations. Let’s consider another extreme case in
which all vehicles are moving along the speed limit of a road without any congestion. One
minute later, there are also only two possible scenarios, i.e., their speeds remain unchanged
or reduce because of some suddenly emerged congestions. In contrast to the extreme cases,
for a car with intermediate speed, the car may accelerate, decelerate or keep its current
speed some time later, relying on what happens in the near future. Therefore, due to more
variant possibilities of intermediate speed compared to that of low and high speed, the
traffic condition of a segment with intermediate average speed is relatively most difficult to
be predicted.

To gain a deeper understanding of the predictability of traffic patterns, we explore the
effect of commuter demand on daily traffic predictability in terms of the comparison be-
tween weekdays and weekends. It is intuitive that the commuter demand during weekdays
may induce quite different traffic patterns and congestion distribution compared to that at
weekends. However, to our surprise, despite these obvious difference, we find that the daily
traffic patterns in a week are of very similar predictability, nearly regardless of the com-
muter demand, as shown in Fig. 6. These striking results suggest that both weekdays and
weekends have their specific inherent patterns encoded in the historical records, accounting
for the relatively high and similar predictability.

Next, we explore the probability of inferring the state of a segment from the state series of
its adjacent segments. This problem is related to the observability that in the control theory
is defined as if a system’s state can be fully recovered from a set of observable quantities [27].
To the urban road traffic, inferring traffic condition at some locations from the observation
of the other segments has important applications in monitoring and controlling traffic in
real time from a limited number of speed detectors. In analogy with the predictability, we
calculate the inference probability II of a segment based on the information entropy and the
Fano’s inequality. However, different from the predictability, here the information entropy
is calculated by S; = — ZR;cRi P(R;)log,[P(R;)], where R; = {X1, X5, ..., X1} denotes the
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FIG. 6: Daily predictability. (a)-(c), The daily predictability during a week of the 2nd (a), 3rd
(b) and 4th (c) Ring Road. (d) The daily predictability averaging over all of the three Ring Roads
during a week. The parameter values and the box plots are the same as in Fig. 5.

states observed within a single time interval of L road segments connected in a sequence,
and P(R;) is the probability of finding the subsequence R, in this sequence. Similarly, by
solving S" = H (I1™*) 4 (1 — II™*) log, (N — 1), we get a upper bound II™® which captures
the inference probability of the traffic pattern of a road segment from its observable adjacent
segments.

As shown in Fig. 7, we see that the inference probability increases as the amount of seg-
ments increases for all the three ring roads. This phenomenon can be heuristically explained
as follows. For sufficiently short segment lengths (sufficient number of segments), the av-
erage vehicle speed in a segment will be sufficiently close to that in its adjacent segments,
enabling an accurate inference of the segment’s state by trivially using that in its neighbor-
hood. The increment of segment length induces more difference between adjacent segments,
rendering the inference more difficult. As a result, the inference probability is an increase
function of the amount of segments. More importantly, our results provide a quantitative
understanding of the inference probability in terms of number of segments, which is valuable
for determining the density of speed detectors installed so as to infer the traffic condition of
the entire road in real time in certain accuracy. In addition, we also find that the inference
probability of the 3rd ring road exhibits the lowest values compared to the 2nd and 4th ring
roads, which is the same as the predictability rank of the three ring roads, i.e., the 3rd ring
road is of the lowest predictability. This suggests that the average vehicle speed plays similar
role in both predictability and inference probability, which deserves deeper explorations.
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II. DISCUSSIONS

In summary, using the GPS records of vehicles to capture the traffic patterns on urban
roads in the combination of entropy and Fano’s inequality demonstrates that daily traffic
pattern in the three major ring roads in Beijing is high predictable by relying only on short-
time historical records, without any a priori knowledge of drivers’ origins and destinations,
driving habits, navigation strategies, and adaptive behaviors. We have also found that
despite the apparently different traffic patterns in weekdays from that in weekends, where
the former is highly affected by the commuter demand, their traffic patterns exhibit similarly
high predictability. This result indicates that each day has its specific inherent regularity
and traffic pattern encoded in the historical records. Another striking finding is that the
local predictability is non-monotonically correlated with the average velocity and the lowest
predictability arises at intermediate velocity. Consequently, the traffic condition of the
3rd ring road due to its intermediate average velocity compared to the 2nd and 4rd ring
roads, is most difficult to be predicted. We have provided a heuristic explanation for this
counterintuitive phenomenon. Furthermore, the probability of inferring the traffic pattern
of an inaccessible road segment from the state series of its adjacent segment is explored by
using entropy and Fano’s inequality, which is important for monitoring the traffic condition
of the entire road network with respect to the limits of our ability to observe every location
in real time.

All of these findings are valuable for the development of predictive models and algorithms
for achieving actual predictions of traffic condition in real time based solely on short-time
historical records, without the need of individual-level information that in principle is im-
possible to be fully accessed. Relying on the successful prediction of traffic patterns, it
is feasible to implement effective control to release and prohibit congestions by exploiting
traditional approaches in traffic engineering [28] and the recently developed controllability
theory for complex networks [29, 30]. Urban road network as a typical complex networked
system exhibits a variety of dynamical behaviors, such as the phantom jam and the diffusion
of congestion [11]. Thus, it is imperative to control the road network as a whole in virtue of
the controllability framework rather than controlling a single road or area individually. Our
approach gains new insight into mitigating increasingly severe congestions in urban areas by



combining “big data” and the tools in information theory and for time series analysis. Fur-
ther effort, we hope, will be inspired toward predicting traffic pattern and devising effective
strategies to alleviate traffic congestion in urban areas.
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III. METHODS

We use OpenStreetMap [31] to extract all roads in the spatial range of Beijing from
available database. We then retrieve the trajectories of vehicles. The data set that we used
contains the trajectories of 20000 taxies recorded every minute within a month in Beijing.
For each record, the location (the latitude and longitude), the direction, the state (whether
there are any passengers in the taxi), the time stamp and the velocity updated in every
minutes are included. Because of the inevitable error in the GPS locating process, all the
records are preprocessed to match the GPS trajectories to the road by exploiting the ST-
Matching algorithm [32]. After that, each GPS record is mapped to a road segments of
OpenStreetMap.

To be concrete, ST-Matching algorithm of Ref. [32] is implemented via four steps: (i)
Candidate Preparation. Firstly, for each GPS record point, the ST-Matching algorithm
retrieves a set of candidate road segments within a fixed radius r, which is set to be 20 meters.
For the points without any candidates within r, the algorithm discards them as invalid
records. (ii)Spatial Analysis. The algorithm next evaluates the given candidate segments
by using “observation probability” and “transmission probability” to express the geometric
and topological information of each candidate segments and the spatial relationship between
them. This step gives rise to the spatial analysis function Fy(ci_; — ¢f), which is simply
the product of the observation probability and transmission probability. In this function,
c; represents the sth candidate segment of the ith GPS sampling record. This function
measures the probability that the the 7th record is on ¢, given an assumed real segment
mapping of the (¢ — 1)th record, that is ¢! ;. (iii) Temporal Analysis. The ST-Matching
algorithm exploits the temporal analysis function Fy(cf_; — ¢f) to further incorporate the
temporal features into the map-matching process. This step is available for the situation that
only spatial analysis could not handle. Specifically, if the trajectory of a vehicle lies between
a freeway and a service road, and it moves in a relatively high speed, then more likely it is
that the vehicle is on the freeway. (iv) Result Matching. Finally, after Fi(c!_; — ¢f) and
Fi(ct_, — ¢f) is computed, the algorithm uses the ST-function to evaluate each candidate
segments, that is F'(ci_; — ¢f)=Fs(cl_; — ¢§)x Fy(ct_; — ¢§),2 <i < n. Thus, the problem
is converted to finding a path with the highest ST-function value, given the candidates for
all sampling points.

After the map-matching process, each point is assigned with an attribute which represents
the road segment that the point is on. Based on the work before, we could generate the
time series of each road segment’s speed states.
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