
Characterizing Evolution of Extreme Public Transit
Behavior Using Smart Card Data

Zhiyong Cui
Department of Civil and

Environmental Engineering
Univesity of Washington

Seattle, WA, US
Email: zhiyongc@uw.edu

Ying Long
Beijing Institute of City Planning

Beijing, China
Email: longying1980@gmail.com

Ruimin Ke
Department of Civil and

Environmental Engineering
Univesity of Washington

Seattle, WA, US
Email: ker27@uw.edu

Yinhai Wang
Department of Civil and

Environmental Engineering
Univesity of Washington

Seattle, WA, US
Email: yinhai@uw.edu

Abstract—Existing studies have extensively used temporal-
spatial data to mining the mobility patterns of different kinds of
travelers. Smart Card Data (SCD) collected by the Automated
Fare Collection (AFC) systems can reflect a general view of the
mobility pattern of the whole bus and metro riders in urban
area. Most existing work focusing on mobility pattern usually
ignore a special group of people who travel in abnormal patterns
or mechanisms. In this paper, we focus on the evolution extreme
transit behaviors of travelers in urban area by using SCD in 2010
and 2014. We have several aspects of descriptive statistics of the
SCD with a view to better understanding the dynamic process
and evolution of the extreme transit behavior. By combining the
SCD’s temporal information and the amount of travel behavior,
we also proposed a concept of Extreme Index (EI) based on
the mixture Gaussian model to depict the extreme level of the
passengers’ travel pattern. According to our analysis, the normal
transit behavior of the two year have nearly the same temporal
distribution. Although the regularities of the two years’ SCD are
not correlated, the EI models of the two years are very similar,
which can be applied in further discussion for urban transit or
transportation analysis.

I. INTRODUCTION

The continuum of human spatial immobility-mobility at
varying geographic and temporal scales poses fascinating
topics and challenges for researchers and governments to make
right decisions on urban development and traffic assignment.
As a major urban transit method, the public transit has made
a great contribution to mitigate congestion and save energy.
Although, many works are carried out focusing on the analysis
of passengers’ travel pattern, there is still a group of people
we need to pay more attention, whose behavior always reflect
the extreme events and mechanisms in the city.

Extreme travelers have received increasing attention in re-
cent years, when we experiencing the backdrops of the global
financial crisis, increased numbers of the unemployed, rise
of telecommuters and low-paying jobs relocated to cheaper
places inside or outside a region/country. But it needs a more
general criteria to evaluate these phenomenon and estimate the
evolving of these special travel patterns. In this paper, we focus
on the evolution extreme transit behaviors of travelers in urban
area by using SCD in 2010 and 2014. We have several aspects
of descriptive statistics of the SCD with a view to better
understanding the evolution of the extreme transit behavior.

We also proposed a concept of Extreme Index (EI) based on
the mixture Gaussian model to depict the extreme level of the
passengers’ travel pattern.

The paper is organized as follows. In the next section, we
describe some previous work related to extreme transit behav-
ior. We then give a brief dataset description in the Section
III. Several descriptive statistics of the SCD are demonstrated
and the regularity of passenger’s travel pattern is analyzed in
the Section IV. Section V mainly characterizes the level of
extreme transit behavior and define the Extreme Index (EI).
We conclude this paper and have a discussion of future work
in Section VI.

II. RELATED WORK

Hanson [3] is among the first researchers to focus on
stability and show analyzing individuals’ stability requires
also analyzing their mobility. Based on this idea, James et
al. [1] concentrate on detailed substructures and spatiotem-
poral flows of mobility to show that individual mobility is
dominated by small groups of frequently visited, dynamically
close locations, forming primary ”habitats” capturing typical
daily activity. To measure residents’ transit behavior in urban
area, SCD in public transit is one of the most widely used
data. In their work, public transit riders are classified into
four groups of different types of extreme transit behaviors
to identify the spatiotemporal patterns of these four extreme
transit behaviors. Further, Neal et al. [4] discuss personalizing
transport information services based on SCD. Zheng et al.
[10] show us several typical applications based on SCD,
like building more accurate route planners. Legara et al.[5]
infer passenger type from commuter eigentravel matrices by
focusing on passengers’ usual and unusual travel patterns. Also
Cui et al. [2] have perspectives on Stability and Mobility of
Passenger’s Travel Behavior through SCD. Only Long et al.[6]
seek to understand extreme public transit riders in Beijing
using both traditional household surveys and SCD and we
combine his work to show our findings in this paper.

III. DATASET DESCRIPTION

To evaluate the evolution of extreme transit, we look into
movements of public transit users with in Beijing by using



(a) Weekly Trip time distribution of 2010 and 2014. X-axis represents the time lasting for one week with 1 minute interval. Y-axis indicates
the number of trips. The curves are smoothed by Hanning function with the window size of 21. Monday in each year is a holiday

(b) Weekly Trip time distribution. X-axis & Y-axis
are with the same meanings of Fig.1(a)

(c) Distribution of numbers of trips in each day (d) Distribution of numbers of smart card holders
whose traveling days ranging from 1 to 7 in one week.
Y-axis is the number of card holders

Fig. 1. descriptive statistics of the data in 2010 and 2014

smart card data. The SCD contains transit riders’ records for
both the bus and metro systems. There were two types of
AFC system on Beijing buses: flat fares and distance-based
fares. In this paper, no matter what kind of fare system, we
consider the transaction (paying) time as the time for one ride
for simplicity.

We select SCD with shared card IDs from two datasets in
2010 and 2014. Both the selected datasets of 2010 and 2014
last for one week and come from the first complete week in
April. The two datasets contain the same smart card IDs with
the amount of 1.9 million, representing 1.9 million passengers
lived in Beijing at least from 2010 to 2014. We assume
each smart card represents an anonymous passenger, without
considering the situation of passengers’ changing card, which
is not common in Beijing. Moreover, even though someone
discards the smart card or returns it back to public transit
company, the smart card’s ID will not be assigned to others any
more in Beijing. Each record of the SCD consists of 1) smart
card ID, 2) boarding or alighting time, and 3) station ID of
boarding or alighting line. As we do not have the longitudinal
information of public transit stations, we only use the temporal
information of passengers’ boarding and alighting time for
each ride.

IV. DATA STATISTICS & ANALYSIS

To better understand the travel pattern of public transit user,
we carry out several aspects of descriptive statistics of the data.
Although we do not have the spatial information of the SCD,
to characterize the passengers’ extreme travel activity, we first

introduce the trips’ temporal distribution and card holders’ trip
number distribution into our analysis. Then, we do our analysis
in an opposite direction that we focus on the travel regularity.

A. Temporal distribution analysis
We count smart card’s travel activities (trips) with an

interval of 1 minute and thus, the whole smart card records can
be represented as a vector with 10080 (7*24*60) components.
Figure 1(a) shows the weekly trip time distributions of the
SCD in 2010 and 2014. The two years’ curve are very similar
during the whole week. There are 7 obvious curves in the
figure which demonstrate the 7 days’ trip pattern. Each of the
7 curve has two peaks which represent the morning peak and
the evening peak. One special case we need to look at is the
first curve for Monday, which is obviously different from the
other weekdays. As we checked, the first Mondays of April
in both 2010 and 2014 are the part of a national holiday of
China, the Tomb Sweeping Day. Thus, it is reasonable that the
trip amount of Monday is less that that of the other weekdays.

Figure 1(b) shows the distribution of daily travel time during
the whole week in each year of 2010 and 2014. The curves
have been smoothed by the Hanning function with a window
size of 21. The curve nearly starts from 5:00am (the 300th
point in the figure) and last until the end of the day (the 1400th
point). There are two obvious peak in each curve and the
evening peak is scattered with 3 sub-peaks which demonstrates
there are mainly 3 kinds of time for workers leaving office.
That may be one of the features of a megacity, like Beijng,
which has different leaving office time to spread the evening
peak over several hours to mitigate the traffic congestion.



Fig. 2. Trip number distribution with respect to smart card holders during
one week

The distribution of trip numbers in each day of the week is
demonstrated in Figure 1(c). The trips of each day, except
Saturday, in 2014 are more that that of 2014, which indicates
the people holding the smart cards in our dataset increase their
public transit travel times after 4 years. Figure 1(d) shows the
distribution of numbers of traveling day for each smart card
holder. We may expect the curve in this figure would be a
monotonically decreasing function. But actually, people who
traveling in 4 days a week is more than that of 3 days a week.
Considering Monday is a holiday and only 4 days (Tuesday
to Friday) are weekdays in this case, the commuters with high
possibility to travel in 4 days of the week, accounting for a
large proportion of the whole dataset, are one of the major
groups of people we need to analysis.

B. Travel times distribution analysis

After we count the travel times of all the card holders, we
get a trip number distribution shown in Figure 2. The number
of holders who only have 1 public transit trips per week reach
the peak of the curves. Then the number of holders decreases
as the number of trip increase. One interesting phenomenon in
this figure is that both the curves appear to be serrated and the
card holder number with odd trip number is mostly smaller
than that with the even trip number adjacent. It seems like if
people choose to travel by public transit, they mostly would
like to travel a round trip other than a single trip.

C. Regularity Analysis

In this section, we aim to figure out the relation be-
tween passengers’ regularity between the two years. The large
amount of SCD in 2010 and 2014 can help us understand each
passenger’s weekly travel regularity.

1) Defining Distance between Smart Card Records: As the
time span of SCD in 2010 and 2014 both cover one week,
we estimate each passenger’s trip activities using a ”weekly
profile”, a vector contains 168 (7×24) variables describing the
distribution of the trip activities. Each variable in the vector
represents the number of smart card’s transaction time over
each hour in each day of the week. Figure 3 illustrates weekly
profiles of passengers’ transaction time.

Fig. 3. Weekly profiles of two passengers’ transaction time. The transaction
time (colored squares) reflects their different travel pattern. Numbers in
squares represent times of transaction in that hour. D1-D5: weekdays, D6:
Saturday, D7: Sunday.

We count the transaction time of SCD in each hour of the
week to form a vector consisted of 168 (24 hours × 7 days)
variables, V = [v0, · · · , v167] ∈ N . We define a method to
compute the distance between two vectors as Transaction
Distance (Dtran). Since non-extreme passengers’ vectors are
mostly sparse vectors. We define the distance between the two
vectors, u and v, by computing the sum of ith component
distance (Di) between ui and vi. The component distance (Di)
consists of two parts, the time interval (Ti) and the absolute
difference of the two components’ value (Ai = |ui − vi|). As
for the time interval Ti, if one of ui and vi equals to 0, Ti

equals the smaller value of the previous and the next time
intervals between non-zero components in different vectors,
namely Ti = min{TP

i , TN
i }. If ui and vi both do not equal

to 0, Ti = 0. Then, the Transaction Distance between vectors
u and v can be represented as:

Dtran =
167∑
i=0

min{TP
i , TN

i }+ k ∗ |ui − vi|, s.t. ui ̸= vi

(1)
Here, k, ranging from 0 to 3, is a parameter to balance the
weights of T and A, as we tested. Figure 4 shows an example
of computing the transaction distance. Tj = min{TP

j , TN
j }

equals 1 and Tl = 0. If a non-zero component in one vector
cannot find a previous or next non-zero component in the other
vector, like the situation of ui, its TP

i equals min{i, 167− i}.
2) Regularity Analysis: We take three aspects of weekly

regularity into consideration:
• Travel frequency of the week, W = d

7 ∈ [ 17 , 1]. Here, d is
the number of days when passengers travelled by public
transit.

• Travel frequency of every day. We count the number of

Fig. 4. Example of the distance between two vectors, u and v



Fig. 5. Relationship between passengers’ travel regularities of 2010 and 2014

trips in each day of the week, D = {Di|i = 1, ..., 7}.
The standard deviation of D is calculated as Dsd.

• Temporal differences between daily trips. We acquire
the temporal differences of n daily trips in one week,
DIST = {Disti|i = 1, ..., n∗(n−1)

2 }, by using the
distance calculating method presented in Section IV-C1.
DISTsd is the standard deviation of DIST .

Then, since D sd and DISTsd is negative correlated with
regularity, we defined passenger’s regularity (RE) as:

RE = W × e−Dsd × e−DISTsd , RE ∈ (0, 1] (2)

We also acquire each passenger’s stability (Sta), which subject
to the variance between each passenger’s regularities in 2010
and 2014 (RE10 and RE14), Sta = RE14/RE10. Figure
5(a) shows the relation between RE10 and RE14, and the
correlation coefficient is 0.0485. Figure 5 (b) shows the rela-
tion between RE10 and Sta, and the correlation coefficient is
-0.00059. This two coefficients are both less than 0.1, which
means the regularities of passengers between 4 years are nearly
irrelevant. We may assert that the regularity between long-time
intervals cannot be predicted.

V. CHARACTERIZE THE LEVEL OF EXTREME TRANSIT

Our previous work [6] has proposed several definitions
of extreme transit behavior. We first define and identify the
extreme travelers here. But several kinds of extreme transit
behavior cannot completely reflect passengers? extreme travel
pattern. Thus, we then propose a more general definition with
regard to the extreme pattern based on the SCD analysis above.

A. Four Extreme Transit Behavior
Four types of extreme travelers are defined based on their

behaviors in weekdays, by setting several thresholds and
combining empirical knowledge of Beijing as depicted in
Table I. For example, since most people’s working hours start
on 8:30 or 9:00 am in Beijing, public transit boarding time
before 6:00 am would be considered as an unusually early
situation.

According to [6], [7], commuting journeys, which are
required by the TIs, can be constructed based on commuters’
job and home location. Even though our dataset does not have
spatial information about bus/metro station, we can substitute
the station’s number for the location to identify passenger’s
job and home location.

Fig. 6. Distribution of the probability of SCD’s travel time probability of
2010

B. Extreme Index

As we can see in the four extreme transit above, the EBs and
NOs is defined according to the time of travel activities, while
the TIs and RIs is defined based on the amount (frequency)
of travel activities. Thus, we may conclude that the extreme
transit pattern is influenced by two aspects of the travel
activities, time and amount. The earlier or later passengers
travel, the more extreme their transit is. Also the larger the
amount of trips is, the more extreme the travel pattern is.
To generate a general definition of extreme transit behavior,
we define the extreme level of each passenger’s travel pattern
as Extreme Index (EI) combining the travel time and travel
amount. The larger the EI is, the more extreme the card
holder’s travel pattern is.

1) Travel Time Probability: In order to be better aware of
whether the travel time of a card holder is extreme or not,
we acquire the probability of each minute in the week from
weekly travel time distribution shown in Figure 1(a). Taking
the data of 2010 for an example, on entry of smart card record
has k trips in the week, whose travel time sequence,T , is
represented as T = {ti|i = 1, ..., k; 0 < k < 10080}. The
total quantity of trips in the week is N . The number of trips
at time ti is nti . Thus, the empirical probability of occurrence
of a trip at time ti is represented as pti = nti/N . For a smart
card record, its travel time probability can be described as

TTP =
k∑

i=1

pti/N . Here, we get the distribution of TTP of

all the SCD of 2010, shown in Figure 6. Some common-used

TABLE I
DEFINITIONS OF EXTREME TRAVELERS

Type Defination
Early Birds

(EBs)
First trip < 6AM, more than two days
in five weekdays (60% of weekdays)

Night Owls
(NOs)

Last trip > 10PM, more than two days
in five weekdays (60% weekdays)

Tireless
Itinerants (TIs)

≥ one and a half hours commuting,
more than two days in a week

Recurring
Itinerants (RIs)

≥ 30 trips in weekdays of a week
(≥ 6 trips per day)



Fig. 7. 2-dimensional PDF and CDF of TTP and ATT of the data in 2010

distribution function was tried to fitting the TTP distribution,
but the performance is not good. Thus, we will deal with the
fitting problem in the following sections.

2) Extreme Index: After the computation in the above
section, each smart card has a attribute of TTP . The TTP
can show the extreme level for a small TTP demonstrating a
few passengers will choose this kind of travel time. But two
card holders’ travel pattern with the same amount of TTP can
also be different. For example, the travel pattern with a TTP
acquired by 10 travel activities is definitely differ from that
acquired by 2 travel activities. Thus, we estimate the traveller’s
EI by considering two aspects, TTP and the amount of travel
times in the whole week (ATT ), and acquire 2-dimensional
distribution shown in Figure 7.

We use Bivariate Gaussian Kernel Density Estimation to
fit the TTP -ATT distribution. We also get the contour of the
probability density function (PDF) and cumulative distribution
function (CDF) which can help us have a better view of
the distribution. As the 2d distribution can be represented as
a mixture gaussian distribution, we fits the model by max-
imum likelihood using the Expectation-Maximization (EM)
algorithm to get parameters. The mixture gaussian distribution
can be represented by the distribution function F:

F (x) =
n∑

i=0

ωiPi(x) (3)

As the vector x = {x1, x2} obey normal distribution:

N (x|µ,Σ) = 1

(2π|Σ|)1/2
e−

1
2 (x−µ)⊤Σ−1(x−µ) (4)

We use EM algorithm to estimate the n tuples of parameter
(ω, µ, Σ). But the first thing we need to do is determine the
value of n. There are several criteria that can evaluate the

quality of the model and the goodness of fit of the model, like
Akaike information criterion (AIC), Bayesian information
criterion (BIC) and negative log likelihood (NLL). After we
test the n ranging from 3 to 6. We get the the criteria listed
in the Table II. We use the three criteria mentioned above to
measure the number of component of the distribution. As we
can see in the table, no matter what the sample size is and no
matter which criteria is, when n is larger than 4, the value of
the criteria decrease very little. Especially for the case in the
BIC with 2000 sample tested, when n equals 4 (in the gray
gird), the value is larger than the value when n equals 5. Thus,
considering the simplicity of a model and the goodness of
the fit, we choose n equals 4 in this model. Figure ?? shows
the contour of our mixture gaussian distribution model. For
the 2010 case, the parameters with 4 tuples (ω, µ, Σ) of the
model is described as:{((ω1 = 0.327), (ω2 = 0.198), (ω3 =
0.161), (ω4 = 0.314)); (µ1 = (0.0019, 10.24), (µ2 =
(0.0013, 1.46), (µ3 = (0.0020, 2.57), (µ4 =
(0.0014, 5.47)); ((Σ1 =

(
0.0000 −0.0009
−0.0009 24.8318

)
, (Σ2 =

( 0.0000 0.0000
0.0000 0.4341 ) , (Σ3 =

(
0.0000 −0.0002
−0.0002 1.6797

)
, (Σ4 =

( 0.0000 0.0001
0.0001 6.0962 )))}. The parameters of 2014 is described

as:{((ω1 = 0.190), (ω2 = 0.358), (ω3 = 0.138), (ω4 =
0.314)); (µ1 = (0.0017, 10.48), (µ2 = (0.0021, 5.52), (µ3 =
(0.0013, 1.33), (µ4 = (0.0014, 3.12)); ((Σ1 =
( 0.0000 0.0001
0.0001 24.5545 ) , (Σ2 =

(
0.0000 −0.0006
−0.0006 8.9095

)
, (Σ3 =

( 0.0000 0.0000
0.0000 0.3349 ) , (Σ4 = ( 0.0000 0.0001

0.0001 2.3395 )))}.
Then Figure 8 shows the estimated contour of the PDF.

Thus, up to now, we have the model of EI and let EI equals
the distribution function shown the equations in the Eq. 3 and
4. Given a SCD, we can quickly compute the TTP and ATT
as the input variables to get the value of EI. The smaller the
EI, the more extreme the transit pattern is.

As we checked, although the data’s regularities in 2010 and



TABLE II
CRITERIA OF THE DATA OF 2010 TO DETERMINE THE COMPONENT SIZE n

2,000 samples 20,000 samples 200,000 samples Total data (nearly 2,000,000)

n AIC
1.0e+4

BIC
1.0e+4

NLL
1.0e+3

AIC
1.0e+5

BIC
1.0e+5

NLL
1.0e+4

AIC
1.0e+6

BIC
1.0e+6

NLL
1.0e+5

AIC
1.0e+7

BIC
1.0e+7

NLL
1.0e+6

1 -1.2905 -1.2877 -6.4576 -1.2988 -1.2984 -6.4944 -1.2955 -1.2955 -6.4776 -1.1216 -1.1216 -5.6082
2 -1.3791 -1.3730 -6.9066 -1.3840 -1.3831 -6.9212 -1.3798 -1.3797 -6.8992 -1.2094 -1.2094 -6.0470
3 -1.4298 -1.4202 -7.1658 -1.4357 -1.4344 -7.1802 -1.4247 -1.4245 -7.1235 -1.2199 -1.2198 -6.0990
4 -1.4595 -1.4466 -7.3205 -1.4521 -1.4503 -7.2629 -1.4398 -1.4396 -7.1995 -1.2475 -1.2475 -6.2378
5 -1.4623 -1.4460 -7.3403 -1.4581 -1.4558 -7.2932 -1.4576 -1.4573 -7.2882 -1.2570 -1.2570 -6.2851
6 -1.4688 -1.4492 -7.3792 -1.4681 -1.4654 -7.3442 -1.4639 -1.4635 -7.3197 -1.2645 -1.2645 -6.3225
7 -1.4718 -1.4488 -7.4001 -1.4697 -1.4664 -7.3525 -1.4655 -1.4651 -7.3278 -1.2674 -1.2673 -6.3770

2014 are irrelevant, the EI models of 2010 and 2014 are very
similar according to their parameter tuples. We also find that
the average EI of the four extreme pattern is lower that the
average of the whole dataset, which can in return prove the
legitimacy of the EI model.

VI. CONCLUSION

In this paper, we focus on the evolution of extreme public
transit behaviors of travelers by using the SCD of Beijing in
the year of 2010 and 2014. We carry out several descriptive
statistics of the SCD in order to have a better understanding the
dynamic process and evolution of the extreme transit behavior.
These distributions based on the SCD’s temporal information
reveals several interesting phenomena and corroborate each
other with the datasets’ background. We also define a distance
between SCD to characterize the regularity of travel patterns.
By combining the SCD’s temporal information and the amount
of travel behavior, we proposed a concept of Extreme Index
(EI) based on the mixture Gaussian model to depict the
extreme level of the passengers’ travel pattern.

According to our analysis, the normal transit behavior of
the two years have nearly same temporal distributions. The
definition of the SCD’s distance may be useful for further
research. By using this distance, we define and analyze an
opposite concept of extreme, regularity. Although the regular-
ities of the two years’ SCD are not correlated, the EI models
of two years, which are the main contribution of this paper,

Fig. 8. Estimated contour of the mixture gaussian distribution of 2010 data.
X-axis represents the TTP and y-axis represents the ATT

are very similar. With the EI model, every smart card will
have an attribute of EI, which can be introduced to further
cross comparisons analysis. We will also improve the EI model
with respect to the variation of trips’ temporal information and
entropy of the occurrence of travel activities. The EI model
can definitely be applied in further discussion for urban transit
and passengers’ behavior and status analysis.
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