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a b s t r a c t

The use of micro-models as supplements for macro-models has become an accepted approach into the
investigation of urban dynamics. However, the widespread application of micro-models has been hin-
dered by a dearth of individual data, due to privacy and cost constraints. A number of studies have been
conducted to generate synthetic individual data by reweighting large-scale surveys. The present study
focused on individual disaggregation without micro-data from any large-scale surveys. Specifically, a ser-
ies of steps termed Agenter (a portmanteau of ‘‘agent producer’’) is proposed to disaggregate heteroge-
neous agent attributes and locations from aggregate data, small-scale surveys, and empirical studies.
The distribution of and relationships among attributes can be inferred from three types of existing mate-
rials to disaggregate agent attributes. Two approaches to determining agent locations are proposed here
to meet various data availability conditions. Agenter was initially tested in a synthetic space, then verified
using the acquired individual data, which were compared to results generated using a null model. Agen-
ter generated significantly better disaggregation results than the null model, as indicated by the proposed
similarity index (SI). Agenter was then used in the Beijing Metropolitan Area to infer the attributes and
location of over 10 million residential agents using a census report, a household travel survey, an empir-
ical study, and an urban GIS database. Agenter was validated using micro-samples from the survey, with
an average SI of 72.6%. These findings indicate the developed model may be suitable for using in the
reproduction of individual data for feeding micro-models.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-models using individual-level data, such as agent-based
models (ABMs) and microsimulation models, have been discussed
increasingly in the context of regional, urban, and population stud-
ies as supplements to traditional macro-models (Wu, Birkin, &
Rees, 2008). However, the use of micro-models has been hindered
by the poor availability of individual data due to privacy and cost
constraints. To rectify this hindrance, a number of studies have
been conducted to generate synthetic individual data by reweigh-
ting large-scale surveys. This study focused on individual disaggre-
gation without micro-data from large-scale surveys. This situation
is common in developing countries like China, Southeast Asian
countries, South American countries, and African countries. Specif-
ically, a series of steps were proposed to disaggregate heteroge-
neous agent attributes and locations from aggregate data, small-
scale surveys,1 and empirical studies. These disaggregated results
could be used as input for ABMs and microsimulation models. Micro-
simulation models tend to pay attention to micro-data based on

policy evaluation (such as taxes, insurance, and health). ABMs focus
more on exploring emerging phenomena at the macro-level, using
interactions among agents, simple behavior rules, and interactions
between agents and their environment. In this paper, the term ABMs
is used, but the present approach also applies to microsimulation
models.

Conditions of micro-data availability can be divided into three
levels. The first level involves sufficient micro-data for ABMs.
Such conditions occur in areas like Sweden, where original sur-
veyed micro-data can be freely accessed (Holm, Lindgren, Makila,
& Malmberg, 1996). The study conducted by Benenson et al. in Is-
rael also fit the criteria for the first level (2002). Householder
agents were conducted using the 1995 Population Census of Is-
rael. The second level includes surveyed samples, such as the
UK. Sample of Anonymised Records (SARs) and the U.S. Census
of 2000. These samples can be used to feed agents in ABMs di-
rectly or after necessary reweighting (synthetic creation), as in
studies conducted by Birkin, Turner, and Wu (2006) and Smith,
Clarke, and Harland (2009). The third level is the absence of
large-scale micro-data for initializing ABMs. Such conditions exist
in regions in which only statistical yearbooks or census reports
with aggregate information of surveys are published, such as in
China and other developing countries. The ABM constructed by
Li and Liu was constructed at this level (2008).
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Individual disaggregation has been discussed in the field of pop-
ulation studies, especially population synthesis, which is used to
generate synthetic individual data for microsimulation models
using aggregate data. Synthetic construction and reweighting are
two dominant approaches to individual disaggregation, as demon-
strated by Hermes and Poulsen reviewed current methods for
reweighting (2012). Müller and Axhausen reviewed a list of popu-
lation synthesizers, including PopSynWin, ILUTE, FSUMTS, CEM-
DAP, ALBATROSS, and PopGen (2010). The iterative proportional
fitting (IPF) techniques2 adopted by PopGen, were first proposed
by Deming and Stephan (1940), and comprise one of the most widely
used methods for population synthesis. IPF, which involves reweigh-
ting, can adjust tables of data cells so they add up to selected totals
for both the columns and rows (in two-dimensional cases). The
unadjusted data cells are referred to as seed cells, and the selected
totals are referred to as marginal totals. Fienberg used IPF to com-
bine multiple censuses into a single table (1977).

IPF is a mathematical procedure originally developed to com-
bine information from two or more datasets. It can be used when
the values in a table of data are inconsistent, or when row and
column totals have been obtained from different sources
(Norman, 1999). Birkin et al. developed the Population Recon-
struction Model to recreate 60 million individuals reweighted
from the U.K. Sample of Anonymised Records (SARs) (2006). It
provides 1% micro-data describing U.K. households. Wu et al. sim-
ulated student dynamics in Leeds, United Kingdom, based on the
synthetic population using the Population Reconstruction Model
and an integrated approach of microsimulation and ABM (2008).
Smith et al. (2009) proposed a method for improving the process
of synthetic sample generation for microsimulation models
(2009). The TRANSIMS population synthesizer uses IPF for the
generation of synthetic households with demographic character-
istics in addition to the placement of each synthetic household
on a link in a transportation network and assigning vehicles to
each household (Eubank et al., 2004). However, these previous
studies were primarily conducted to generate individuals based
on existing large scale micro-samples, namely through reweigh-
ting, with the exception of Barthelemy and Toint, whose work
was used to produce a synthetic population for Belgium at the
municipality level without a sample (2013). In the present study,
generating agents were investigated on a fine scale without any
large-scale individual samples.

The present work focused on disaggregating agents with heter-
ogeneous attributes and locations based on both attribute informa-
tion and spatial location information stored in existing data
sources. With respect to agent location, studies regarding the map-
ping of population distribution were considered useful (Langford &
Unwin, 1994; Liao, Wang, Meng, & Li, 2010; Mennis, 2003). In these
studies, population density can be interpolated using spatial fac-
tors and population census data. However, these studies did not
consider the disaggregation of population attributes. Spatial attri-
butes of agents can be probed based on the mapped agent location
by overlaying the location of the agent with spatial layers, such as
accessibility to educational facilities, neighborhood similarity, and
landscape quality (Robinson & Brown, 2009). Spatial attributes of
agents have been used in some ABMs (Crooks, 2006; Crooks,
2008; Li & Liu, 2008; Shen, Yao, Kawakami, & Koujin, 2009). With
respect to disaggregation of agent attributes, Li and Liu defined
agent attributes using aggregate census data (2007). However, they
only considered two characteristics of the agents, while the rela-
tionships between agent characteristics and agent location were
not considered.

The present study targets the third level of data availability, in
which no large-scale micro-data are available for developing ABMs.
The differences between the present study and previous IPF-based
studies, such as those conducted by Birkin and Clarke (1988), Rees
(1994), Birkin et al. (2006), Ryan, Maoh, and Kanaroglou (2009) and
Smith et al. (2009) are as follows. First, the present synthetic
reconstruction approach can generate micro-data using only
aggregate data and information. This approach does not require
individual samples. However, a census based IPF, which takes a
reweighting approach, requires surveying large-scale individual
data for the production of marginal cross-classification tables of
counts and marginal tables for reweighting. IPF could be included
in the present approach for cases in which large-scale samples are
available. The present approach can be used to disaggregate indi-
viduals, households, and other micro-samples, such as vehicles,
organizations, packages, and buildings. Accordingly, this approach
is more general than micro-data synthesis studies that focus pri-
marily on population disaggregation, such as those by Birkin
et al. (2006) and Smith et al. (2009). Third, the spatial locations
of samples, which are essential to spatial ABMs, receive special
attention in this approach, as advocated by Birkin and Clarke
(1988) and Wong (1992). Ideas are borrowed from the residential
location choice approach to mapping the disaggregated individu-
als. Both the characteristics and location of each agent are disag-
gregated for the initialization of ABMs in the present paper; IPF
is primarily used in microsimulation and population studies for
population estimates in the years between censuses, rather than
in ABMs, as advocated by Norman (1999). The present approach
falls into the pool of synthetic reconstruction. It has three afore-
mentioned advantages over existing related studies that target
the disaggregation of micro-data.

The current paper presents a method of disaggregating aggre-
gated datasets into individual attributes and locations in situations
in which micro-data are not available. This paper is organized as
follows: The approach to disaggregating agents is detailed in
Section 2. The initial testing and verification under experimental
conditions is described in Section 3. Section 4 shows the disaggre-
gation of full-scale residents in Beijing. Discussion and concluding
remarks are provided in Sections 5 and 6, respectively.

2. The research approach

2.1. Assumptions

To disaggregate agents, the approach for disaggregating attri-
butes and location should be established separately. Attributes of
agents are further divided into two types, non-spatial attributes
(such as age, income, and education for a residential agent) and
spatial attributes (such as access to subways and amenities, land
use, and height of the building that the residential agent occupies).
The approach to disaggregating spatial attributes also differs from
that used for non-spatial attributes. Because an agent’s spatial
attributes depend on its location and environmental context, the
order in which the agents are disaggregated involves non-spatial
attributes, location, and spatial attributes. The disaggregating ap-
proach to each portion of the agent information varies, and these
differences are elaborated on in the following subsections.

The probability distribution of an attribute (hereafter referred
to as the distribution) and the dependent relationship among attri-
butes (hereafter referred to as the relationship) can be inferred
from existing data sources, including aggregate data, small-scale
surveys and empirical studies. Aggregate data include the total
number, distribution and relationship (such as the cross-tabulation
of marriage-age standing for the dependent relationship of
marriage and age, and the cross-tabulation of income-education

2 See Wong for a mathematical exploration of the IPF and see Norman for a review
(1992, 1999).
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standing for the dependent relationship of income and education)
of agents. Small-scale surveys that store samples can also be used
to deduce the distribution of an attribute and the relationships
among attributes. They can also be used to validate the disaggrega-
tion approach through a comparison of surveyed samples to disag-
gregated agents. The probability distribution of an attribute and its
relationship with other attributes can also be deduced using
empirical studies; for example, the height attribute of a resident
obeys a normal distribution (A’Hearn et al., 2009). To convert
aggregate data to individual samples, the probability distribution
of the attributes and the relationship between them must be esti-
mated. All attributes of agents are discretized in Section 2.2 and
the specific distribution and relationship forms of the proposed ap-
proach are introduced in Section 2.3.

The disaggregation order among agent attributes and location
should also be considered. It is a context-dependent process. For
example, attribute A has a known distribution based on existing
data sources. Attribute B has a known distribution and known rela-
tionship with attribute A, and attribute C has a known relationship
with attribute D, according to empirical statistical correlations. The
independent attributes, which do not depend on other attributes,
should be disaggregated first. Next, dependent attributes, which
have known relationships with other attributes, can be disaggre-
gated. In this case, attribute A should be disaggregated first, then
attribute B. This is because attribute B has a relationship with attri-
bute A. A logic check should be conducted to guarantee the disag-
gregated results make sense. The authors admit that the method
for determining disaggregation order is, to some degree, ad-hoc
and informal, and dependent on the empirical statistical correla-
tions that the users apply for disaggregation. Other population syn-
thesizers cannot avoid this problem. Users are encouraged to
utilize empirical statistical information to determine the order of
disaggregation. The flowchart of the disaggregation approach we
proposed is shown in Fig. 1, detailed in the following subsections.

2.2. Discretizing attributes of agents

There are various strategies for disaggregating agent attributes.
According to Stevens, the data describing agent attributes can be di-
vided into four different types of scales: nominal (such as marriage
and education), ordinal (such as rank order), interval (such as date
and temperature) and ratio (such as age and income) (1946). Nom-
inal and ordinal types are qualitative and categorical, while interval
and ratio types are quantitative and numerical. These scales could
be further divided into discrete and continuous classifications. In
most aggregated data, such as census reports and yearbooks, the
information available for continuous attributes is presented in dis-
crete form. For this, all continuous data were converted into dis-
crete data to reduce the disaggregation time. For example, the
attribute age can be divided into a variety of non-numeric intervals,
such as 0–4 years old, 4–7 years old, and 7–12 years old. In the pro-
cess of disaggregation, it is possible to generate a value randomly,
such as 3 years old from 0 to 4, and this can serve as the disaggre-
gated result. Notably, the process for discretizing a continuous
attribute, such as age, should consider the existing age ranges pre-
sented in the known information (in terms of distributions and rela-
tionships) discussed in Section 2.3. Dramatic changes in individual
characteristics over a range (such as the age class 16–21: in high
school or in college) were avoided by using common sense and
empirical research results to evaluation of the attribute.

2.3. Disaggregating non-spatial attributes of agents

2.3.1. Known distributions of information
The known distribution of information, including the categories

and intervals (discretized from continuous values) of an agent

attribute and their frequencies, are discussed in the description
of the disaggregation process. For example, if the categories of
the attribute marriage are married, unmarried, and divorced, and
the corresponding frequencies are 45, 20, and 35, then 45 agents
are married, 20 are unmarried, and 35 are divorced among every
100 individuals. The frequencies and probability density function
(PDF) are two forms of known distribution information. For the for-
mer, the disaggregated values of the attribute follow the frequency
distribution. For example, in the case of attribute A among 6
agents, the categories of attribute A are a, b, and c, and the frequen-
cies of this attribute are 3, 2, and 1. Then the disaggregated values
of attribute A for all agents may be as follows: {a; b; a; c; b; a}. For
the disaggregation of an attribute with a known PDF (such as
Gaussian or uniform), the value range of this attribute can be di-
vided into several bins and the frequency for the middle value in
each bin can be determined using the PDF. In this way, this condi-
tion can be converted in the same manner as the previous
frequencies.

2.3.2. Information regarding known relationships
Two types of relationships are considered in this paper. The first

is the functional relationship (RA). In this instance, the value of an
attribute depends on one or more attributes and is a function of
these attributes. The value of this attribute can be calculated using
other attributes. The second is the conditional probability relation-
ship (RB, also called joint probability). Under these conditions,
there is a probability relationship between the attribute j and its
related attribute h, expressed as P(h|j). The frequencies of attribute
j, such as P(j), and the categories or intervals of both attributes are
known. Then the probability of each combination of categories or
intervals of attributes h and j can be calculated using
P(hj) = P(h|j)P(j); the count of each combination is P(hj) multiplied
by the agent total count. For every 100 persons, the attribute j
(AGE) has two intervals, 18–30 years old (40%) and 31–60 years
old (60%). Its conditional probability with the attribute h (mar-
riage) is known: Out of all individuals 18–30 years old 60% are
married and 40% unmarried. Out of all individuals 31–60 years
old, 80% are married and 20% unmarried. This means there will
be 40% * 60% * 100 = 24 married persons within the age range of
18–30 and 40% * 40% * 100 = 16 unmarried persons are in 18–30,
60% * 80% = 48 married persons are in 31–60, and
60% * 20% * 100 = 12 unmarried persons are within the age range
of 31–60.

A cross-tabulation of two attributes in which the information of
marginal totals in the rows and columns are known is the general
form of RB. RB can also be inferred using data mining platforms,
such as SPSS. For conditions in which both the frequencies (P(h)
and P(j)) and RB (P(h|j)) are known, IPF can be directly applied to
the disaggregation procedure.

2.4. Mapping spatial location of agents

For the allocation of agents, the entire study area must be par-
titioned into small spatial units. In this study, parcels served as the
basic spatial units for allocating agents according to the availability
of spatial data and the expected application requirements. The pro-
cess of disaggregating the location of agents caused the allocation
of the agents into parcels as point objects. Two solutions were
developed for the disaggregation of the agents’ locations for the
sake of different requirements. The solution used to allocate agents
into space was selected based on current knowledge and data
availability of the spatial distribution of agents. The first solution
parcel allocates agents into parcels in accordance with the statisti-
cal information associated with the spatial distribution of those
agents. For example, if the number of agents in each parcel are in
a region comprised of 80 parcels, and five agents are known to
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be in parcel A, then parcel A will randomly select five agents to oc-
cupy, and five points as agents will be randomly created within the
parcel. In this way, the agent location can be disaggregated using
the same approach for the disaggregation of non-spatial attributes
as discussed in Section 2.3.

The second solution allocates agents based on the residential
location choice theory. The most common residential location
choice model used in practice, the Multinomial Logit Model
(MNL) (see Pagliara & Wilson, 2010 for a review), was used to
map disaggregated agents. The basic logic of the MNL model is
that households are evaluated based on their own attributes,
such as income and household members. The sampling of avail-
able, vacant housing units and their characteristics, such as price,
density, and accessibility to service facilities were considered.
The relative attractiveness of these alternatives was measured
by their utility. The model then computed the probability that
a given household would select a given location from the

available alternatives, defined as vacant housing units, given
the preferences and budget constraints of the households seeking
housing. This idea was borrowed and used to allocate agents into
spaces while considering each agent as a resident and each geo-
graphical space as a housing market for residents to select. The
agent location then depends on both its non-spatial attributes
and related spatial layers in its environmental context. For exam-
ple, a residential agent’s socio-economic attributes can influence
its preference for each type of spatial layer, such as the accessi-
bility, amenities, and landscape. Parcels have distinguished spa-
tial attributes, and residential agents with different preferences
for spatial layers will select the parcel with the greatest prefer-
ence as their place of residence. This solution is expressed as
follows:

Pij ¼
X

k

wik � Fkj þ rij ð1Þ

Fig. 1. Flowchart of the disaggregation approach.
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Here, Pij is the preference of agent i for parcel j, Fkj is the value of the
spatial layer k at parcel j, which can be calculated by overlaying the
parcel with the spatial layer in GIS; wik is the preference coefficient
of agent i for spatial layer k, and rij is the random item of agent i for
parcel j. Pij is standardized to range from 0 to 1.

An updated form of choice, the constrained choice solution allo-
cates agents using a residential location choice theory that obeys
the statistical information of agent spatial distribution. It differs
from choice in that the number of agents with the highest prefer-
ence selected by a parcel is constrained by the statistical informa-
tion. For example, if the aggregate data indicate there are six
agents in parcel B, then parcel B can be used to select the top six
agents with the highest preference for this parcel, after evaluating
preferences for all parcels by all agents. From a conceptual point of
view, the constrained choice solution is the most useful because it
uses additional information. This solution may produce better re-
sults than other solutions.

2.5. Validation of the disaggregation approach

The disaggregation approach was validated by calculating the
similarity between disaggregated and observed agents. The follow-
ing similarity indicator was proposed for comparison of agents:

SI ¼
P

uiAui þ
P

viBvi þ
P

wiCwi

ðU þ V þWÞ � I

Aui ¼ 1� sdis
ui � sobs

ui

su;max � su;min

����
����

Bvi ¼
1; if sdis

v i ¼ sobs
v i

0; otherwise

*

Cwi ¼ 1� the rank of sdis
wi � the rank of sobs

wi

#ordinals� 1

����
����

ð2Þ

Here SI is the similarity indicator; Aui is the similarity between the
disaggregated value and the observed value of the ratio and interval
attribute u of agent i. Bvi is the similarity between the disaggregated
value and the observed value of the nominal attribute v of agent i;
Cwi is the similarity between the disaggregated value and the ob-
served value of the ordinal attribute w of agent i; U, V, and W are
the number of ratio and interval, nominal, and ordinal attributes
to be compared, respectively; I is the total number of agents; sdis

ui

and sobs
ui are the disaggregated and observed values of the ratio

and interval attribute u of agent i, respectively; su;max and su;min are
the maximum and minimum values of the ratio and interval attri-
bute u, respectively; sdis

vi and sobs
vi are the disaggregated and observed

values of the nominal attribute v of agent i, respectively; sdis
wi and sobs

wi

are the disaggregated and observed values of the ordinal attribute w
of agent i, respectively; #ordinals is the count of ordinals in an ordi-
nal attribute. The similarity index SI is 100% for two sets with the
same agent attribute values. To calculate SI, both sets must be
sorted by the same rule. The location attribute should be sorted
first, followed by sorting the other attributes in increasing order.
It is also necessary to disaggregate the same number of agents as
observed agents.

A null model was proposed here to further investigate the effec-
tiveness of the proposed approach. The null model can disaggre-
gate the attributes and locations of agents randomly (that is,
agents are randomized within the spatial units), assuming that nei-
ther distribution nor relationship information is available for the
disaggregation process. The null model randomly allocates agent
locations and randomly sets agent attributes. The advantage of
the present approach over the null model can be determined by
comparing disaggregated results obtained using the present ap-
proach to those generated using the null model.

Wong used the absolute relative error (ARE) index, which is the
total absolute error divided by the sum of all cell values, to com-
pare the disaggregated agents with the observed ones (1992).
The present approach and the approach used by Wong differ in
several ways. First, his approach works well for categorical attri-
butes but not numerical attributes, whereas the present approach
is applicable to both numerical and categorical attributes because
it covers all four types of values. Second, Wong’s approach
becomes increasingly complex in cases with high dimensions and
too many attributes to disaggregate. Third, the spatial location is
included in the present approach. Fourth, Wong’s approach con-
sists of validation at the group level, while validation is conducted
at the individual level in the present approach. The process of the
present approach can also guarantee precision at the group level,
whereas Wong’s approach cannot.

3. Experiments in synthetic space

The Agenter (agent producer) model was developed based on
the Geoprocessing module of ESRI ArcGIS using Python, and was
used to disaggregate heterogeneous agents using the proposed ap-
proach. This model was applied in a synthetic space in the Beijing
Metropolitan Area (BMA) to disaggregate resident locations and
attributes. First, the applicability of this model was verified and
tested in a synthetic space. To accomplish this, all disaggregation
conditions (including spatial solutions, distribution types, and rela-
tionship types) discussed in the research approach section are in-
cluded in the synthetic space experiments. The current model
was verified by comparing the results of disaggregation obtained
using each spatial solution to those obtained using the null model.
Because there is no known observed set, the model cannot be val-
idated in the synthetic space. For this reason, this process was done
with the BMA experiment. This model was verified using a null
model.

3.1. Synthetic space and agents within it

The datasets in the synthetic space, including the geometry of
the space and known information regarding the residents within
it, were not based on real-world data, but were assumed by the
authors. It was assumed there were 100 residents living in the syn-
thetic space, composed of 100 parcels. Each parcel was assumed to
have a size of 250 m � 200 m, which is a common parcel size in
Beijing. The space contains one school, as shown in Fig. 2. Amenity
1 and Amenity 2 (which represent facilities such as convenience
stores) are for disaggregating agent locations in cases in which
the choice and constrained choice solutions are used, as described
in Section 2.4.

The residential agents in the synthetic space have the following
attributes: age, marital status, income, travel, parcel (this attribute
records the spatial unit ID), and school factor (Table 1). The disag-
gregation order of attributes was determined using known infor-
mation. Age was assumed from a census survey report with
aggregated information and was disaggregated first. Marital status,
which empirical studies show to be related to age, was disaggre-
gated next. Income was then disaggregated with the known PDF
inferred from a small-scale survey. Travel was found to depend
on age and income and was disaggregated using relationships
identified in a small-scale survey. Parcel, which denotes the agent
location, was disaggregated using known frequencies obtained
from another census survey. After disaggregating the agents’ loca-
tions, the distance to the parcel’s only school was disaggregated
using the school factor and the locations of the agents (Fig. 2).

18 Y. Long, Z. Shen / Computers, Environment and Urban Systems 42 (2013) 14–25
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3.2. Input data

The input data of the Agenter model are presented in this sub-
section. It should be noted that these data were used to test our
proposed approach and some may not match the practices well.
The intervals and frequencies of AGE are shown in Table 2.

The dependent relationships between age and marital status are
shown in Table 3. The column AGE is the age interval h, as shown in
Table 2. The column MARRIAGE gives the probability of every type
of marital status for the corresponding age category. For example,
for people aged 18–30 (h = 3), the probability of residents being
married (j = 1) is 70%, and the probability of being divorced
(j = 3) is 10%.

INCOME is assumed to have a Gaussian distribution. It has a
mean value of 6000 and standard deviation of 1500.

TRAVEL is assumed to depend on both AGE and INCOME. This
relationship was simplified based on the assumption that these
data could be inferred from a small-scale survey conducted within
the synthetic space using the following decision tree:

TRAVEL¼

\No trip";if AGEP0 and AGE64
\Car";if INCOMEP6000
\Bus";if INCOME62000 and AGEP55 and AGE670
\Non-mobile";otherwise

*

ð3Þ

Frequencies of the attribute PARCEL are shown in Fig. 2.
Agenter also requires a table for disaggregating agents (Table 4).

Specifically, this table was used to check for obvious

inconsistencies among attributes of disaggregated results based
on common knowledge or empirical studies. As shown in the sec-
ond row of this table, in most cases the income of a resident aged
0–18 will be 0. The third row of this table shows that most resi-
dents who reside less than 1000 m from a school will travel either
by bus, bicycle, or on foot. The rules in the table improved the dis-
aggregation precision and rendered the results more consistent
with reality.

3.3. Disaggregation results

3.3.1. Results produced using the parcel solution in virtual space
The first 10 of 100 disaggregated agents obtained using the par-

cel solution are shown in Table 5, in which the column AID shows
the unique agent ID. The mapping results of all disaggregated
agents are stored as the point Feature Class (Fig. 3a), and were
all closely consistent with the observed frequencies of the parcels.
Every point located within a certain parcel in Fig. 3a had its corre-
sponding attributes and could be directly input into ABMs or
microsimulation models. Spatial analysis and spatial statistics
could be conducted based on the mapped disaggregated agents.

Fig. 2. The synthetic space. Note: The number in each parcel denotes the number of
known residential agents within the parcel, and parcels with no figures indicate
unoccupied parcels.

Table 1
Inventory of residential agent attributes in the synthetic space.

Attribute Description Type Known
information

Data source Data type Order

AGE Age in years Non-spatial
attribute

Frequencies Census survey Ratio 1

MARRIAGE Marital status Non-spatial
attribute

RB Empirical
studies

Nominal (married, unmarried, divorced, remarried,
widowed)

2

INCOME Monthly income in CNY Non-spatial
attribute

PDF Small-scale
survey

Ratio 3

TRAVEL Means of traveling Non-spatial
attribute

RA Small-scale
survey

Nominal (car, bus, no trip, non-mobile) 4

PARCEL Parcel in which the agent
resides

Location Frequencies Census survey Nominal (parcel IDs) 5

SCH Distance to the school in
meters

Spatial attribute Location of the
school

Urban GIS Ratio 6

Table 2
Frequencies of the age attribute.

ID (h) Age interval (h) Percent

1 0–10 5
2 10–18 10
3 18–30 20
4 30–55 35
5 55–70 25
6 70–100 5

Table 3
Dependent relationship between MARRIAGE and AGE.

AGE (h) MARRIAGE (j)

1 2, 100
2 1, 0.5; 2, 99.5
3 1, 70; 2, 10; 3, 10; 4, 5; 5, 5
4 1, 50; 2, 5; 3, 10; 4, 10; 5, 25
5 1, 30; 3, 20; 4, 5; 5, 45
6 1, 15; 4, 5; 5, 80

Table 4
Evaluation of inconsistencies among disaggregated results.

ID F1 N1 F2 N2

1 AGE 0–18 INCOME 0–0
2 SCH 0–1000 TRAVEL Bus-non-mobile
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3.3.2. Results using the choice and constrained choice solutions
For the choice solution, all agents were classified into three

types in terms of their residential location choice preferences
(Table 6). Column w1 indicates a preference for Amenity 1, and
w2 indicates a preference for Amenity 2, as shown in Fig. 2. In this
experiment, rij in Eq. (1) was distributed uniformly from 0 to 0.1,
and the sum of w1 and w2 was 0.9. We defined the agents with
an income greater than or equal to 6000 as type A, agents with
an age greater than or equal to 60 were defined as type C, and other
conditions were defined as type B. In this way, a type A agent
would care more about accessibility to Amenity 1 than to Amenity
2, and would therefore prefer to occupy parcels near Amenity 1. A
type C agent would prefer to live in parcels close to Amenity 1, and
a type B agent prefers Amenity 1 and Amenity 2 equally. The value
of the spatial layer (Amenity 1 or Amenity 2) in Eq. (1) is calculated
by F = e�a*dis, where a is the distance decay coefficient (set at
0.0001 in this study), and dis is the distance to the spatial layer.
The preferences of all agents for all parcels can then be calculated
as a matrix upon which the location choice process for disaggregat-
ing agent locations can be based. For the constrained choice solu-
tion, the locations of agents can be disaggregated using the
approaches discussed in Section 2.4. In contrast to the choice solu-
tion, the agent count in each parcel is introduced into the disaggre-
gation process using the constrained choice solution.

The results of various location disaggregation solutions vary
significantly (Fig. 3). The agents disaggregated using the parcel

solution obey the known agent number in each parcel. The agents
disaggregated using the choice solution tend to approximate the
two facilities, Amenity 1 and Amenity 2, due to their location pref-
erences, and the results significantly differ from those obtained by
the parcel solution. The agents using the constrained choice solu-
tion displayed similar results to those that used the parcel solution
in space. However, the attributes of disaggregated agents obtained
using the two approaches varied from each other greatly due to
different disaggregating processes via checking agent attributes
in GIS. Based on the results of various location solutions, the con-
strained choice is recommended here as the best solution for cases
in which the spatial distribution of agents is known.

3.4. Model verification for all location solutions

Before applying Agenter to data synthesis, the model must first
be verified by checking its response to the input, comparing two
solutions for mapping agents, and comparing Agenter to the null
model. Because applications in real areas are more complex than
simulations, Agenter was verified in a synthetic space. The ap-
proach detailed in Section 2.5 was used to confirm the Agenter
model in the synthetic space. Both attributes and locations of
agents were considered in the verification process. First, since
there were no observed samples in the synthetic space, one set
of agents was disaggregated using the so-called best-constrained
choice solution. The observed set of agents was then used to test
the applicability of our model. Second, the null model was run
500 times to produce enough sets of results for comparison with
those generated by Agenter (Fig. 3d). Third, for each type of loca-
tion solution, Agenter was run 500 times to cover various results.
Fourth, the disaggregated results produced by Agenter were com-
pared to those produced by the null model using Eq. (2). The total

Table 5
Disaggregated agents (partial) in the synthetic space.

AID AGE MARRIAGE INCOME TRAVEL PARCEL SCH

1 46 Married 2679 Non-mobile 97 1578
2 4 Unmarried 0 No trip 0 1375
3 65 Married 4663 Non-mobile 2 1463
4 54 Married 5778 Non-mobile 3 1566
5 48 Married 4016 Non-mobile 16 1175
6 26 Married 2904 Non-mobile 16 1175
7 48 Widowed 6066 Car 29 1245
8 19 Married 3450 Car 34 1095
9 56 Widowed 4082 Non-mobile 34 1095

10 26 Married 7143 Car 35 1230

Fig. 3. Mapping disaggregated agents using various solutions: (a) parcel; (b) choice; (c) constrained choice; (d) null model. Note: The point for the location of each agent does
not correspond to actual spatial distribution. It only shows which parcel the agent is in. The color of the parcel indicates the observed agent count, as in Fig. 2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Residential location choice preference for each type of agent.

Type w1 w2

A 0.9 0
B 0.45 0.45
C 0 0.9
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number of agents (I) was 100. Three continuous attributes (age, in-
come, and SCH) and three categorical attributes (marriage, travel,
and parcel) were counted in this process (U + V = 6).

The verification results plotted in Fig. 4 showed that the similar-
ity indexes (ranging from 40% to 80%) of the Agenter and the null
model did not vary greatly, indicating that both models are stable
and the disaggregated agents are repeatable. Agenter produced a
significantly greater SI than the null model, with an average value
of 43.9% (SD = 1.44%), demonstrating that Agenter is better suited
for disaggregating agents. The better similarity index was assumed
to be a result of known information being input into Agenter.
Among the three location solutions, the constrained choice solu-
tion generated the greatest average SI of 78.5%, which was slightly
greater than the SI of 76.7% observed for the parcel solution. The
SIs of the choice solution were significantly lower than those of
the constrained choice and parcel solutions, which was likely be-
cause the different patterns of agents disaggregated using different
models increased the dissimilarities between the spatial location
parcel and the spatial-aware attribute SCH. Overall, the results of
this test suggested that the constrained choice solution is best
among the three since the information introduced into Agenter
was the richest.

4. Experiment in the Beijing Metropolitan Area

4.1. Input data

After the Agenter model was applied to the synthetic space, it
was applied to the Beijing Metropolitan Area (BMA) to disaggre-
gate heterogeneous residential agents. In this real-space experi-
ment, Agenter’s applicability for disaggregating residential agents
was demonstrated using the Fifth Population Census Report of
the BMA conducted in 2000 (the census), described in the Beijing
Fifth Population Census Office and Beijing Municipal Statistical Bu-
reau (2002), and the Household Travel Survey of Beijing conducted
in 2005 (the survey). The census was conducted at the census tract
level,3 which is similar to the scale of a city block, each of which con-
tains dozens of parcels in Beijing. Published census data were aggre-
gated from the original census tract level to the district level (18
districts in the BMA). The total population count in the census
was 13.819 million in the BMA.4 The census data provided both
the distributions and relationships among residents. Many

cross-tabulations for various combinations of attributes are listed
in this census report, and were used to obtain frequencies and build
relationships as in Table 3.

The survey covers the entire BMA, including all 18 districts
with 1118 Traffic Analysis Zones (TAZs) as the basic geographi-
cal survey unit (Beijing Municipal Commission of Transport and
Beijing Transportation Research Center, 2007). The sample size
was 81,760 households, housing a total of 208,290 persons.
There was a 1.36% sampling ratio in contrast to the total popu-
lation recorded in the census. The survey provided household
information, including household size, hukou status (official res-
idence registration),5 residential location at the TAZ level, and
personal information, including gender, age, household role and
job type and location . The aforementioned information was used
to further validate Agenter in the BMA. In addition, this survey
included a one-day travel diary of all respondents, collected
through face-to-face interviews. For each trip, the survey recorded
the departure time and location, arrival time and location, trip
purpose, mode of transit (both public and individual transporta-
tion), trip distance, type of destination building and transit route
number.

In this experiment, the number of agents to be disaggregated
was the same as the total number of residents recorded in the
census (13.819 million). The attributes and locations of residen-
tial agents to be disaggregated within the BMA are listed in
Table 7. The dependent relationships among attributes are illus-
trated in Fig. 5. To save space, all input information regarding
distributions and relationships was stored online as Supplemen-
tal material for this paper. The format of the model inputs for
the BMA experiment is the same as that in the synthetic space
(Section 3.2 Input data).

The attribute PARCEL is the ID of the parcel used to map the
disaggregated residents. All input rules are available online as ta-
bles in an MS Access file. Only typical tables are shown here. To
disaggregate locations of the residential agents, the parcel GIS
layer must contain agents for Agenter. The residential parcels
(Fig. 6) were extracted from a land use map of the BMA from
2000, which has 133,503 polygon parcels, including 26,770 resi-
dential parcels. For each residential parcel, the floor area was ob-
tained from aggregating buildings within each parcel. The
number of residents in each parcel was allocated from each dis-
trict available in the census report based on the floor area of
each parcel, assuming homogeneity in residential floor areas in
Beijing. This information is stored as frequencies of the attribute
parcels.

Fig. 4. Comparison of disaggregated results generated using the Agenter model and the null model.

3 The spatial distribution of census tracts has never been released from the Beijing
Municipal Statistical Bureau. Therefore, it is not possible to determine whether census
tracts are compatible with TAZs.

4 Both registered (with hukou) and unregistered residents (without hukou) were
included. 5 Both registered and unregistered residents were interviewed.
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4.2. Disaggregating residential agents in the BMA

The disaggregated residential agents (partially listed in Table 8)
are mapped in Fig. 7, and are stored as the point Feature Class in
the ESRI Personal Geodatabase. This dataset embeds both the attri-
butes and location information of residential agents, which can be

regarded as a primary dataset for urban studies and initializing
agent-based models. The disaggregated residential agents and par-
cels took up 2.9 GB; the model requires less than 1 h to accomplish
the disaggregation of 1 million residential agents (every agent has
10 attributes) for the experiment in the BMA. The test was con-
ducted using a workstation with a CPU of 3.0 GHz * 2 and memory
of 4 GB. The amount of time consumed by Agenter primarily de-
pends on the number of agents, their attributes, the distribution,
and the complexity of the relationship.

5. Discussion

5.1. Validation using the 2005 travel survey

We validated the Agenter model in the BMA using agents ob-
served in the survey. In the survey, household and personal infor-
mation such as age, sex, income, and number of family members
were also included. TAM can be calculated based on the TAZ
location (the centroid of each TAZ is used here) for this survey.
For a better comparative validation, 208,291 individuals were

Table 7
Descriptions and known information for each attribute of residential agents in the BMA.

Name Description Type Known information Data source Data type Order

AGE Age in years Non-spatial
attribute

Frequencies The census Ratio 1

SEX Gender Non-spatial
attribute

Frequencies The census Nominal (male, female) 2

MARRIAGE Marital status Non-spatial
attribute

Frequencies, RB (with
AGE)

The census Nominal (married, unmarried, divorced,
remarried, widowed)

3

EDUCATION Level of education Non-spatial
attribute

Frequencies, RB (with
AGE)

The census Ordinal (junior middle school, undergraduate,
etc.)

4

JOB Occupation Non-spatial
attribute

Frequencies, RB (with
EDUCATION)

The census Nominal 5

INCOME Monthly income Non-spatial
attribute

Frequencies The survey Ratio 6

FAMILYN Number of family members Non-spatial
attribute

Frequencies The census Ordinal (one person, two person, etc.) 7

PARCEL ID of parcel at which the
agent resides

Location Frequencies An empirical
study

Nominal 8

TAM Distance to the city center Spatial
attribute

Location of Tiananmen
Square

Urban GIS Ratio 9

Fig. 5. Dependent relationships among attributes of residential agents.

Fig. 6. Residential parcels in the BMA.
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disaggregated using Agenter. Input information is given in Sec-
tion 4.1. The parcel solution was adopted in Agenter. For compar-
ison with the null model, both the Agenter and null models were
run 500 times. In the disaggregated results, the attribute PARCEL
was further aggregated into TAZ so the validation could be com-
pared to that in a TAZ-scale survey. A total of six attributes were
evaluated for calculation of SI. These were AGE, SEX, INCOME,
FAMILYN, TAM, and TAZ. The similarity indicator SI was calculated
using simulated results and observed results, as shown in Fig. 8.

The average SI of Agenter is 72.6%, which is significantly greater
than that of the null model (43.9%), indicating that Agenter gener-
ates sounder disaggregated agents. Because the null model repre-
sents a random disaggregation process, the rules adopted in
Agenter regarding the forms of distributions and relationships
are part of why the present model outperforms the null model.
As more comprehensive rules are entered into Agenter, its
performance in terms of precision may increase further. As shown
in Fig. 8, Agenter’s behavior is stable in terms of SI. This demon-
strates that Agenter can be used to reproduce individuals in actual

situations, which means representative disaggregated agents can
be retrieved by running Agenter a few times or even only once.

For more solid validation, we also broke down the average SI
72.6% for all TAZ and attributes across space and attributes. First,
the average SI for each TAZ was calculated based on existing global
results of 500 simulations. Those TAZs with more samples in and
around the central part of the city were found to have greater
SIs, indicating that more samples lead to better-disaggregated re-
sults. This was reasonable considering that the disaggregated re-
sults did not closely match the original samples. When a TAZ has
only 10 or 20 samples, the results become less likely to match. Sec-
ond, the SI was calculated based on the sorted disaggregated re-
sults and observed samples, as described in Section 2.5. Location
was given the highest sorting priority, followed by other attributes.
Under these conditions, the location of disaggregated results was
the most consistent with observed samples. The lowest priority
attributes showed the least consistency. For this reason, the attri-
bute of interest should be given higher sorting priority. This may
produce more consistent results.

5.2. Discussion on the experiment results in the BMA

All of the residents were successfully disaggregated in terms of
spatial distribution and socioeconomic attributes in Beijing. This is
the first time that the researchers and planners of the Beijing Insti-
tute of City Planning have been able to access large-scale disaggre-
gated micro-data regarding the city of Beijing. Agenter was
evaluated and found to be a convenient tool with explicit embed-
ded algorithms, and its users are able to easily understand the dis-
aggregation mechanism. The disaggregation results in Beijing were
applied to several small-scale detailed plans for new towns in the
Beijing area for the Beijing Affordable Housing Plan. The disaggre-
gated population was found to be effective in supporting small-
scale plans and policy evaluations, which required fine-scale
individual data. Before Agenter, these applications were not possi-
ble in Beijing, where the municipal governments do not release
individual datasets used for census reports or yearbooks. The
extensive applications of this disaggregated population in the
BMA are expected in the near future. The travel survey was
conducted in 2005 and the census in 2000, and there were demo-
graphic changes in Beijing from 2000 to 2005. Unfortunately, the
Beijing travel survey conducted in 2000 was not accessible. If
access becomes available in the near future, the travel survey
in 2010 and the population census of 2010 may be used to update

Table 8
Disaggregated residential agents (partial) in the BMA.

AID AGE SEX MARRIAGE EDUCATION JOB INCOME FAMILYN PARCEL TAM

193392 36 Male Married Junior High/Middle
School

Production, Transport Equipment Operator, and
Related

2385 Three
persons

888 2140

198316 41 Female Married High School Production, Transport Equipment Operator, and
Related

5966 Three
persons

966 7747

37094 61 Male Married High School Professional Technology Employee 4744 Three
persons

523 5721

165014 27 Male Unmarried High School Business and Service Employees 5559 Five persons 768 4957
2 41 Female Married Elementary School Production, Transport Equipment Operator and

Related
5351 Three

persons
18 36739

49808 21 Male Unmarried Junior High/Middle
School

Business and Service Employees 2684 Five persons 274 2905

189128 21 Male Married Junior High/Middle
School

Production, Transport Equipment Operator and
Related

2578 One person 878 4092

118806 8 Male Unmarried Elementary School Production, Transport Equipment Operator and
Related

0 Three
persons

478 6949

33570 53 Female Married Elementary School Production, Transport Equipment Operator and
Related

1304 Five persons 929 23,760

179469 50 Male Married Elementary School Farming, Forestry, Animal Husbandry and Fishery 4978 Two persons 804 2286

Fig. 7. Spatial distribution of disaggregated agents in the BMA (partial).
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the Agenter application in Beijing and disaggregate the 2010
population.

There is poor data availability within Beijing, as in most parts of
China. Exploring the disaggregation of intensive datasets using
known information provides an opportunity for micro-level simu-
lation and analysis through agent-based models (ABMs). Crooks
et al. demonstrated that ABMs focus on individual objects or cate-
gories, and thus disaggregate data are an essential determinant of
their applicability (2008). Those areas for which there are insuffi-
cient micro-level data have a greater chance to develop their ABMs
to simulate regional and urban dynamics supported by this ap-
proach. The approach proposed here incorporates known data
and information to the greatest degree possible to initialize ABMs.
This approach also sheds light on linking macro-datasets and
intensive micro-datasets via disaggregation. In addition to initializ-
ing ABMs, this approach can be used in the construction of spatial
population databases, which are essential to geographers and plan-
ners. The approach used herein can generate both population dis-
tributions and socio-economic attributes of the population in the
form of a spatial population layer that is a key to an urban cyber
infrastructure.

5.3. Limitations of the approach

There are currently several limitations to the Agenter approach.
One is that its application can be constrained by the specific data
requirements and assumptions of the approach itself. Specifically,
the use of Agenter requires several steps. First, users must select
the attributes to be disaggregated for agents based on the goals
of the disaggregation. Second, the disaggregation order of attri-
butes must be decided based on the dependent relationships
among the attributes and the availability of existing information.
Third, users must prepare the model input in terms of distributions
and relationships as specified in this study by referring to the
example provided in the online attachment. The online example
is expected to solve this limitation to some degree. Regarding the
second limitation, the agents disaggregated by our approach are
not an exclusive set, even though they obey the same existing sta-
tistical characteristics of samples. When the disaggregated agents
are used in an ABM, the user is expected to disaggregate numeric
sets of agents via running Agenter repeatedly using the same input,
run the ABM with each set, and then treat the mean value (or other
statistical characteristics) of the results from all simulations as the
final simulation result in order to reduce the uncertainty associ-
ated with applying this approach to ABMs. Because many combina-
tions of micro-agents are generated, this process may eliminate
issues associated with the ecological fallacy, a logical fallacy in

the interpretation of statistical data in which inferences regarding
the nature of individuals are deduced from inferences for the group
to which those individuals belong. The ABM does not require an
exact reconstruction of the surveyed population’s original spatial
distribution. Rather, it only needs an inferred distribution that
approximates the actual distribution for purposes of reproducing
similar patterns and interactions such as those found in the actual
data. Based on this consideration, the model is acceptable for ini-
tializing ABMs, despite these limitations.

6. Conclusions

The Agenter approach is proposed in this paper as a means of
disaggregating heterogeneous agent attributes and locations using
known information, including aggregate data, small-scale surveys,
and empirical studies. The agents to be disaggregated include non-
spatial attributes, spatial locations, and spatial attributes. The
known information is modeled as the distribution of an attribute
and as relationships among attributes for disaggregation.

The Agenter model was developed based on the approach pro-
posed here. It was used to disaggregate agents in a synthetic space
and in the BMA. In the first of these experiments, several attributes
were disaggregated using various types of known information, and
then three types of location disaggregation solutions, including
parcel, choice, and constrained choice, were tested. Agenter was
verified using a similarity index (SI) to evaluate the similarities be-
tween the disaggregated and observed agents. Agenter produced
significantly better disaggregation results than the null model
(randomly disaggregated) in terms of SI. In the BMA experiment,
the Fifth Population Census Report of Beijing in 2000, the House-
hold Travel Survey of Beijing in 2005, an empirical study, and the
Beijing urban GIS database were all used to infer frequencies of
attributes and relationships among attributes for the disaggrega-
tion of all residential agents within the BMA. In this experiment,
Agenter was further validated using micro-samples from the sur-
vey, and the average SI was found to be 72.6%. These findings indi-
cate that Agenter can be applied in the real world to reproduce
individuals that can then be fed into ABMs. Overall, this approach
is appropriate to disaggregating agents in situations for which
there are no micro-data from large-scale surveys. Specifically, the
method developed here can make full use of existing statistical
information, surveys, and empirical studies to disaggregate the
attribute values and location of agents.

Even though this approach is best suited to preliminary explo-
ration, it may solve the bottleneck problems associated with ABMs,
like those caused by data scarcity in developing countries. Because

Fig. 8. Validation results of the BMA experiment and comparison with the null model.
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all spatially aggregated data are subject to the modifiable areal unit
problem (MAUP), the disaggregated results may allow the user to
avoid the MAUP, which occurs because the correlation between
the variables in the aggregated data depends on the extent of the
areal units used in the aggregation (Openshaw, 1984; Rees, Martin,
& Williamson, 2002). Generally, there are few attributes recorded
in samples, and unrecorded attributes can be disaggregated using
this approach. The present approach could supplement conven-
tional approaches and may be combined with traditional ap-
proaches. Studies on disaggregating Beijing populations with
more attributes by incorporating Agenter and PopGen are
underway.
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