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Abstract: Existing studies have extensively used spatiotemporal data to discover the mobility patterns of various types of
travellers. Smart card data (SCD) collected by the automated fare collection systems can reflect a general view of the mobility
pattern of public transit riders. Mobility patterns of transit riders are temporally and spatially dynamic, and therefore difficult to
measure. However, few existing studies measure both the mobility and stability of transit riders’ travel patterns over a long
period of time. To analyse the long-term changes of transit riders’ travel behaviour, the authors define a metric for measuring the
similarity between SCD, in this study. Also an improved density-based clustering algorithm, simplified smoothed ordering points
to identify the clustering structure (SS-OPTICS), to identify transit rider clusters is proposed. Compared to the original OPTICS,
SS-OPTICS needs fewer parameters and has better generalisation ability. Further, the generated clusters are categorised
according to their features of regularity and occasionality. Based on the generated clusters and categories, fine- and coarse-
grained travel pattern transitions of transit riders over four years from 2010 to 2014 are measured. By combining socioeconomic
data of Beijing in the year of 2010 and 2014, the interdependence between stability and mobility of transit riders’ travel

behaviour is also discussed.

1 Introduction

The continuum of human spatial immobility—mobility at varying
geographic and temporal scales poses fascinating topics and
challenges for researchers and governments to make decisions on
urban planning and transportation development. Stability and
mobility are relevant, since mobility reflects the movement in
short-term temporal or small spatial scales, while stability refers to
long-term duration of stay or large scale locational consistency.
Geographically, people move over scales ranging from a few
metres to hundreds of kilometres in metropolitan areas; temporally,
they move or stay over scales ranging from a few minutes to many
years. Although people's movement seems to be disordered, we can
still mining useful patterns for both individuals and a group of
residents from various types of data.

The temporal and spatial dynamic mobility pattern of residents
have been concerned about for a long time by researchers in the
fields of transportation engineering [1], computer science [2],
urban planning [3], or even socioeconomics [4]. Along with the
development of computer science and geographic information
system, many new technologies and new types of data can be
utilised to measure people's mobility pattern in large-scale regions,
such as call detail records of mobile phone [5], taxicabs’ GPS
information [6], or even outdoor Wi-Fi signal data. When it comes
to the city-wide mobility analysis, smart card data (SCD) collected
by automated fare collection (AFC) systems may be a better
choice, since AFC system are widely adopted by public
transportation operators in most metropolitan areas [7].

AFC systems based on contactless smart cards are available for
both city buses and metros to record the details of transaction
information when passengers are boarding or alighting. SCD
contains fine-grained information not only about passengers’ ID
(smart cards’ ID) and locations of boarding or alighting stations but
also transaction time and bus/metro lines. It is a great convenience
to utilise SCD to depict passengers’ daily, weekly or yearly travel
profiles in large-scale regions covered by public transit systems.
From an individual perspective, SCD can help record the
passenger's travel records, reflect his/her social and economic
characteristics, and even forecast his/her routine travel patterns.
From a city perspective, SCD acting as a transportation probe can
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help estimate transportation conditions and provide new materials
for intelligent transit systems and urban planning policy. A large
number of transit behavioural studies based on SCD have been
carried out and gained popularities. However, there are still rooms
for improvement in existing studies on SCD-based travel pattern
analysis, which can be summarised into three aspects: (i) The SCD
as a data source for mobility pattern research has inherent
shortcomings; (i) The existing analysis methods also have
drawbacks in terms of model efficiency and complicatedness; (iii)
Few studies focus on the long-term evolutionary travel behaviour
analysis. These shortcomings are described in detail in the
following paragraphs and solved in this study.

Firstly, although SCD has multiple advantages, the
shortcomings of SCD are obvious. The anonymous attribute of
SCD determines the absence of basic personal information, like
age and gender, without which it is hard to measure passengers’
socioeconomic characteristics. For analyses spanning a long period
of time, it may encounter the problems of changing smart cards and
possessing multi-cards of passengers. In addition, some urban
transit systems only record when and where passengers board
transit buses and neglect the alighting information, leading to the
extreme difficulty of inferring the destinations of passengers.
Further, due to the increasing volume of rural-urban migration and
the transient mobility of the internal migration in megalopolises,
the measurement of the stability of the passenger's travel behaviour
will be highly influenced. Thus, for the sake of accurately
measuring the stability and mobility of the transit passenger's travel
behaviour, effective classification or clustering methods should be
employed.

However, existing SCD-based travel behaviour analysis
methods also have drawbacks. Since SCD normally does not
contain the information for labelling the data, such as smart card
owner information, classification methods can hardly be applied
without labelling data. Hence, most existing studies employed
clustering methods. With the help of clustering methods, transit
travellers can be clustered into multiple groups, within which the
grouped travellers share similar travel patterns. Most clustering
methods, such as K-means, need to specify the number of clusters,
i.e. the value of X, in advance. However, for the SCD clustering



task, due to irregularity and variability of the passengers’ travel
behaviours, it is hard to decide how many clusters should be
contained in the SCD set. Some density-based clustering methods
with no need to specify the number of clusters, such as the density-
based scanning algorithm with noise (DBSCAN) and ordering
points to identify the clustering structure (OPTICS), have been
applied for SCD clustering. However, these methods normally need
extra efforts to pre-set some meta parameters for these models,
such as the distance threshold between clusters. Thus, to make the
clustering process more efficient and convenient, we propose a
simplified smooth OPTICS clustering method to group the SCD in
this study.

Much SCD-based work [8-10] focusing on mining transit
passenger travel patterns attempted to distinguish the commuting
trips, including non-transfer and with-transfer trips, and non-
commuting trips. These various types of grouped trips are
important to realise many short-term applications, such as travel
time prediction and transportation scheduling. Even though
existing studies have been conducted to characterise long-term
urban dynamics using SCD [11], how do travel patterns change
over the years has not been well-studied. The long-term travel
pattern changes are capable of reflecting the stability and mobility
patterns of transit passengers and revealing the transportation
development and the underlying urban evolution.

In this study, we utilise the temporal information of SCD to
mine the relationship between the passenger's mobility and stability
in different times and frequency scales. To overcome the
drawbacks of the SCD, we define a metric for measuring the
distance between different SCDs to better describe their similarity.
Further, we propose an advanced density-based clustering method
to group transit trips into different clusters. Based on the clustering
results, we utilise SCD collected from different years to
characterise the long-term stability and mobility of transit
passengers’ travel patterns. To better understand the passenger
behaviour in public transportation, we introduce other
socioeconomic data into our analysis. Our contributions can be
described as follows:

* We define an SCD similarity metric for measuring the difference
between passengers’ travel behaviours. To better describe the
similarity, both the temporal difference and the frequency
difference between SCD records are considered.

* We propose a simplified smoothed OPTICS (SS-OPTICS)
clustering method to cluster SCDs. Comparing to the classical
OPTICS methods, the SS-OPTICS needs less parameters. We
discover groups of passengers behaving similarly with respect to
their boarding time.

» We cluster the SCD based on different grouping granularities to
analyse the long-term mobility and stability of transit
passengers. To measure the evolutionary changes in the
clustering results, socioeconomic data in different years is also
incorporated in our analysis.

The remaining part of this paper is organised as follows. Related
work is briefly discussed in Section 2. In Section 3, we proposed
the SS-OPTICS algorithm and describe our methodology. Our
analysis of mobility and stability is present in Section 4. Section 5
concludes the paper with a summary and a short discussion of
future research.

2 Related work

The concepts of stability and mobility of travel patterns are
opposite but relevant. With the regard of the travel pattern analysis,
the mobility tends to reflect the variations of passengers’ travel
patterns, while the stability characterises the steadiness of patterns
over a period of time. Hanson [4] was among the first researchers
to focus on stability analysis and stated that analysing individuals’
stability also requires analysing their mobility. Through an
empirical example centred on the relationship between
entrepreneurship and place, he explicitly proposed that considering
locational stability requires examining stability and mobility in
tandem, since spatiotemporal dynamics involved. Based on this
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idea, Bagrow and Lin [12] concentrated on detailed substructures
and spatiotemporal flows of mobility to show that individual
mobility is dominated by small groups of frequently visited,
dynamically close locations, forming primary ‘habitats’ capturing
typical daily activity. While many other works [1, 13—15] chose a
perspective on large-scale mobility about urban human beings,
vehicles or taxis.

To measure residents’ stability and mobility in the urban area,
SCD in public transit is one of the most widely used data.
According to Long et al. [16], SCD related research topics can be
classified as: (i) data processing and data complementation, such as
back-calculation of origin and destination and recognition of trip
purpose; (ii) supporting and management of public transit systems;
(iii) place-based urban spatial structure and (iv) person-based
analysis on the social network and special group of people.
Pelletier et al. [17] also gave a literature review of SCD usage in
public transit and presented three levels of management of SCD:
strategic (long-term planning), tactical (service adjustments and
network development), and operational (ridership statistics and
performance indicators). Zheng et al. [2] presented several typical
applications based on SCD, like building more accurate route
planners. Further, Long et al. [3] sought to understand extreme
public transit riders in Beijing using both traditional household
surveys and SCD. In their work, public transit riders were
classified into four groups of different types of extreme transit
behaviours to identify the spatiotemporal patterns of these four
extreme transit behaviours. Further, Lathia et al. [18] discussed
personalising transport information services based on SCD. Among
their contributions, the authors used clustering methods to prove
that the usage of public transportation can vary considerably
between individuals. Each passenger's trips were aggregated into a
weekday profile describing his temporal habits and hierarchical
agglomerative clustering is introduced to discover groups of
passengers characterising different travel habits. Contrary to this
approach, our weekly profile, presented in Section 3, consisting of
hour-grained grids can show more details.

As we investigated, many clustering methods were adopted to
process and analyse SCD. To clustering the temporal information,
Ifsttar et al. [7] constructed temporal passenger profiles based on
boarding information and applied a generative model-based
clustering approach to discover clusters of passengers. Based on
the boarding information, passengers were assigned with
‘residential’ areas, established through the clustering of
socioeconomic data, to inspect how socioeconomic characteristics
are distributed over the passenger temporal clusters. To analyse
year-to-year changes in public transport passenger behaviour,
Briand et al. [19] proposed a two-level generative model that
applies the Gaussian mixture model to regroup passengers based on
the passengers’ temporal habits in their public transit usage. A
density-based clustering method, DBSCAN [20], which is very
similar to OPTICS [21] is used by Ma ef al. [1]. The authors
identified trip chains to detect transit riders’ historical travel
patterns and apply K-Means++ clustering algorithm and the
rough-set theory to cluster and classify travel pattern regularities.
To detect and update the daily changes in travel patterns, a
weighted stop-based DBSCAN is also proposed to reduce
computation complexity [22]. To achieve better clustering
performance, a two-step clustering method [10] was proposed to
cluster transit stations and passengers, respectively. Compared to
the approaches presented in these works, we improve the OPTICS
algorithm to cut down input parameters and control cluster size.
Further, other than, focusing on people's mobility pattern, we
utilise SCD to measure the interdependence between stability and
mobility in the time dimension.

3 Profiling passengers based on SCD

The transit passengers profiling process consists four stages: (i)
pre-processing the SCD based on existing studies; (ii) defining the
distance (similarity) between different SCD records; (iii) clustering
samples of SCD with a proposed simplified smoothed OPTICS
algorithm; and (iv) classifying the whole SCD records with a K-
means-like algorithm according to results of the clustering stage.
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Fig. 1 Weekly profiles of two passengers’ transaction time. The
transaction time (coloured squares) reflects their different travel patterns.
The values in coloured squares represent the number of transactions in that
specific hour. DI-D5: weekdays, D6: Saturday, D7: Sunday

Table 1 Definitions of extreme travellers, according to [3],

which are eliminated in the experiments in this study

Type Definition

early birds (EBs) First trip < 6 AM, more than two days in five
weekdays (60% of weekdays)

Last trip > 10 PM, more than two days in five

weekdays (60% weekdays)
tireless itinerants > =one and a half hours commuting, more than

night owls (NOs)

(Tls) two days in a week
recurring > =30 trips in weekdays of a week (> =6 trips per
itinerants (RIs) day)

3.1 Dataset description

The SCD collected and issued by Beijing Transit Incorporated
contains transit riders’ records for both the bus and metro systems.
There were two types of AFC systems on Beijing buses: flat fares
and distance-based fares, before the beginning of 2015, since when
all bus lines became distance-based fare systems. It is a design flaw
for the bus smart card system that flat fares system records the
transaction (paying) time when checking-in, whereas distance-
based fares system records the transaction time when checking-out.
For the Beijing metro system, although passengers pay the fare
when alighting, the system records the time of both checking-in
and checking-out. In this paper, to offset the design flaw, we
consider the transaction time as the time for one ride.

We select SCD with shared card IDs from two datasets in 2010
and 2014. Both the selected datasets of 2010 and 2014 last for one
week and contain the same smart card IDs with the amount of 1.9
million, representing 1.9 million passengers lived in Beijing at least
from 2010 to 2014. We assume each smart card represents an
anonymous passenger, without considering the situation of
passengers’ changing card, which is not common in Beijing. Each
record of the SCD consists of (i) smart card ID, (ii) boarding or
alighting time, and (iii) station ID of boarding or alighting line. As
the time spans of SCD in 2010 and 2014 both cover one week, we
estimate each passenger's trip activities using a ‘weekly profile’, a
vector contains 168 (7 x 24) variables describing the distribution of
the trip activities. Each variable in the vector represents the number
of smart card's transaction time over each hour in each day of the
week. Fig. 1 illustrates weekly profiles of passengers’ transaction
time.

3.2 Data pre-processing

Before analysing the transit behaviours of the passengers in
Beijing, we separate the whole passengers into two groups:
extreme travellers and non-extreme travellers, according to an
existing study [3]. Four types of extreme travellers are defined
based on their behaviours in weekdays, by setting several validated
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thresholds and combining empirical knowledge of Beijing as
depicted in Table 1. For example, since most people's working
hours start at 8:30 or 9:00 am in Beijing, public transit boarding
time before 6:00 am would be considered as an unusually early
situation [3]. As we evaluated, those types of extreme travellers
only account for a small proportion (less than 5%) of the whole
passengers. Since the extreme travellers have clear definitions and
can be easily filtered out from the raw data, the data of extreme
travellers is eliminated from the dataset for clustering and analysed
separately in the experiments in our study.

3.3 Definition of distance between smart card records

After counting the number of transaction time of each smart card
record, the feature of each record forms a travel record vector with
168 (24 x 7) elements, v = [w, ..., Vis], representing the number of
smart card transactions in each hour of each day in the study period
(one week). Each element of v is a non-negative integer that v; € Z.
There are some classic distance-measurement methods to measure
the similarity of different records, such as Euclidean distance,
Manhattan distance, cosine distance, and cross correlation distance
(CCD). However, since each transaction vector not only records
the number of transactions but also contains temporal attributes,
those classical distance formulas are not capable of
comprehensively measuring the difference, i.e. the distance,
between smart card transactions.

The Euclidean distance can only measure the straight-line
distance between two points, represented by two vectors with 168
dimensions in this study. Since the order of dimensions in the
Euclidean space does not influence the distance, the Euclidean
distance inherently misses out the temporal information between
the SCD records. Similar to the Euclidean distance, the Manhattan
distance measures the grid-based distance between two points and
fails to consider the temporal information. The cosine distance, i.e.
the cosine similarity, measures the similarity between two non-zero
vectors of an inner product space and output the cosine of the angle
between those two vectors. The cosine distance, commonly used in
high-dimensional positive spaces, has already been used in SCD
analysis [23]. However, since the travel record vectors are mostly
sparse, the calculation of cosine distance conducting inner products
on the two compared vectors will significantly cancel out the
difference between the elements in the two vectors, if one of the
elements in a vector is zero. For example, for the two travel record
vectors # and v, if v; = 0 and u; # 0, the cosine distance of # and v
at the ith position «v;*u; =0, which still neglect the travel
frequency difference at the ith time point. The CCD has also been
used to measure similarity/distance between two sequences/vectors
by shifting one sequence to find a maximum correlation with
another sequence [24]. However, due to the shifting mechanism,
the calculation process of CCD almost gets rid of the relative
position information of elements in two sequences. That means
CCD cannot capture the difference of occurrence time of smart
card transactions, and thus, CCD is not utilised in this study.

To solve this problem, we propose a new distance metric
between two SCD transaction record vectors, defined as
transaction distance (TD), to measure the difference between two
transit passengers’ travel patterns. Since most passengers normally
do not take transit very frequent, most of the elements in a travel
record vector are zeros. In this case, the non-zero values in the
travel record vector greatly impact the difference between different
vectors. We define the TD between the two vectors, # and v, by
considering both the time difference and the frequency difference.
Thus, the proposed TD consists of two parts, the riding time
interval (7;) and the absolute riding frequency difference (4;), for
each element i.

The absolute riding frequency difference is defined as
A; = |u; — v)|. As for the riding time interval T}, if one of ; and v;
equals to 0, 7; equals the smaller value of T,P and T,N, namely
T; = min {T,P, T,N} Here, taking u; # 0 for example, T,P represents
the time interval between the current element u; and the nearest
previous non-zero element in vector v. Also correspondingly, TN
represents the time interval between the current element and the
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Data: D (Unprocessed Dataset), €
Result: OrderedPoints
initialization;
while D # Null do
Point = D.pop();
OrderedPoints.append(Point);
P_neighbors = point.neighbor(e);
if P_neighbors # Null then
OrderSeeds =[];
OrderSeeds.update RD(Point, P_neighbors);
while OrderSeeds do
OrderSeeds.sort(key = RD);
Seed = OrderSeeds.pop();
OrderedPoints.append(Seed);
S_neighbors = Seed.neighbor(e);
if S_neighbors # Null then
| OrderSeeds.updateRD(Seed, S_neighbors)

Fig. 4 Algorithm 1: Getting ordered points by OPTICS

nearest next non-zero element in vector v. If i; and v; both equal to
or do not equal to 0, T; = 0. Fig. 2 shows an example of how to
compute the transaction distance that 7; = min {T}), T}\I} =1 and
T;=0. If a non-zero component in one vector cannot find a
previous or next non-zero component in the other vector, like the
situation of i; in Fig. 2, its T,P equals min {i, 167 — i}.

Then, the transaction distance between vectors u and v can be
represented as

167
TD = Y min (T}, 7)) +k *
i=0

, .t wiF v (1)

u—v;

where k is a parameter to balance the weights of 7 and 4. It is
suitable for setting the value of & ranging from 0 to 3, as we tested
in the clustering section.

3.4 Clustering samples of SCD records

After defining the distance between vectors of smart card records,
we cluster the vectors to identify the travel patterns of public transit
riders in Beijing. To accurately cluster the travellers, a suitable
algorithm is needed. Although K-Means algorithms or other
centroid-based clustering models are very efficient, they need to
nominate the number of clusters (K) before running of the
algorithm. Even though iteratively setting K as different numbers

and evaluating the performance may help to identify the proper
value of K, dealing with a high number of observations during this
iterative process is still a big problem for K-Means. As the travel
record vector has a high dimension (168) in this study, grid-based
clustering methods are also not suitable for this problem. A new
density-based clustering algorithm, clustering by fast search and
find of density peaks [25], is also tested. However, it can only
identify 4 or 5 obvious clusters. Thus, to solve the aforementioned
problems, we propose an improved density-based clustering
algorithm based on OPTICS [21], which is suitable for clustering
the data based on the aforementioned TDs. We name it as the
simplified smoothed OPTICS (SS-OPTICS).

3.4.1 Simplify: The original OPTICS algorithm has two key
concepts, core-distance and reachability-distance.

Definition-1: ¢ -Neighbourhood: Let p be an object from a
dataset D. The e-neighbourhood set of a point p is defined by
Ne(p) = {x € D|dist(p,x) < e}.

Definition-2: : Core-distance (cd): Let p€ D, let ¢ be a
distance value, let N.(p) be the ¢ -neighbourhood of p, let MinPts
be a natural number and let MinPts-distance(p) be the distance
from p to its MinPts neighbour. Then, the core-distance of p is
defined as core-distance, yinps(p) =

if Card(N.(p)) < MinPts

UNDEFINED,
otherwise

MinPts — distance(p),

Definition-3: : Reachability-distance (rd): Let p, o € D, let
N,(0) be the & -neighbourhood of o, let MinPts be a natural number.
Then, the reachability-distance of p with respect to o is defined as
reachability-distance, pinps(p, 0) =

if |N.(0)| < MinPts

UNDEFINED,
otherwise

max (core — distance(o), distance(o, p)),

where ¢ and MinPts are two input parameters of the original
OPTICS algorithm. According to OPTICS's definitions, the green
points covered by the yellow circle in Fig. 3 share the same
reachability-distance (rd), which equals to the core-distance of
point o (cd). Although the green points, p,, p,, and p,, have the
same rd, their actual reachable distances from point o are different
(rd’'p, < rdy, < rdy)).

The main ideas of OPTICS can be described as (i) reachability
distance represents density and (ii) reachability-distance
determines the points’ output order, which determines clusters.
Based on these ideas, we can find a design flaw of OPTICS that the
output order of p,, p,, and p;, in the left example of Fig. 3 maybe
disordered due to their same rds. Thus, we design an improved
OPTICS algorithm by abandoning the concept of core-distance and
define a new concept of reachability-distance (RD) as follows

(Fig. 4).

Definition-4: : New Reachability-distance (RD): Let p, 0 € D,
let N.(0) be the ¢ -neighbourhood of 0. The reachability-distance of
p with respect to o is defined as reachability-distance.(p, 0) =
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UNDEFINED,

distance(o, p) s.t.

if [N(0)| =0
p € N(0), otherwise

3.4.2 Smooth: The 2D plot based on the ordered points’
reachability distance can help us distinguish the clusters. As the
denser the points gather, the lower reachability-distances the points
get, the ‘valley’ shapes in the reachability distance curve represent
clusters with high density. In Fig. 5, the blue line is the rd curve of
OPTICS, the green line is the RD curve of SS-OPTICS. We notice
that, although the average value of SS-OPTICS's RD is obviously
less than OPTICS's, their curves are extremely similar.

The red line is the smoothed RD of SS-OPTICS, RD’, in Fig. 5.
We smooth the RD curve with two aims. One is to make it easier to
identify the valley-shaped clusters, and the other is to control the
size of a cluster. By using the mean filtering method to smooth the
RD curve, we can achieve the two goals with only one parameter,
window size (S). Each value of the smoothed RD curve, RD;, is the
mean of RD value of points within the window

j=i+n

RD/; = n=2_- @)

j=i-n

Since RD’ has been filtered by a S sized window, it should be
noticed that the boundary of the valley-shaped cluster has a bias to
the left, and the offset is (S — 1)/2. After the mean filtering, the
valley (cluster) of the RD curve, whose number of the points in this
cluster is less than (S — 1)/2, will nearly be filled up. Thus, the
cluster size is controlled to be larger than (S — 1)/2.

Comparing to OPTICS, SS-OPTICS needs one parameter (&)
and OPTICS needs two (¢ and MinPts). The time complexity of
SS-OPTICS is O(n’), same as OPTICS. Meanwhile, both the
algorithms are not sensitive to the value of the parameters. The ¢ is
set to be 100. In addition, the SS-OPTICS is easier to control the
cluster size and define the cluster boundary by setting the window
size S. Since the window size S only affects the boundary of
clusters, it does not influence the overall clustering performance.
Thus, after experimental testing, the window size (S) is set to be 40
in this study. Finally, we iteratively cluster several random samples
of SCD, containing 20,000 entries in each sample, and identify 33
clusters for the next stage to classify the whole dataset. The
sensitivity analysis on sample size shows that when the sample size
is over 20,000, the clustering results nearly converge, and thus, the
sample size is set as 20,000.

According to the transaction time distribution of the 33 clusters,
they can be classified into four big categories obviously as shown
in Fig. 6. The four categories can be described as: one-day trips,
two-day trips, multi-days trips, and commuting trips. The one-day
trips containing 7 clusters (9-15) are distributed in one day of the
week from Monday to Sunday. The transaction time of two-day
trips (cluster 1-8, 16 and 18-23) is distributed mainly in two days
of the week, while the transaction time of multi-day trips (cluster
24-27, 29 and 31-33) is dispersed in different days (at least 3 days)
of the week. The commuting trips (clusters 17, 28 and 30) are

100 T T T T

mainly characterised with regular morning and evening peaks
during the week.

3.5 Classifying SCD records based on SS-OPTICS results

The set of the 33 clusters acquired by SS-OPTICS is denoted as
C=][C,...,Cy]. Each C; in C is a vector containing 168
components, like the vector of smart card's transaction time. Each
component (cj) of cluster C; is the frequency of passengers’ travel
behaviour in the (j% 24)th hour of the (j— j%?24/7) day of the
week. We also add a cluster to C as the 34th cluster, whose
components are all zero, to classify some noise points. Hence,
taking the clusters’ features as the centroids of clusters,
C = [cijlsax 65, all the SCD records can be grouped into 34 clusters.

According to the acquired data, two necessary aspects of
information for clustering the whole dataset are obtained, i.e. (i) the
cluster number K = 34 and (ii) the feature of each cluster C;. With
the two aspects of information, classifying the whole dataset can be
easily fulfilled by utilising the simple and efficient K-means
algorithm. For each SCD vector, v = [, ..., V7], it belongs to
Cluster C; satisfying

168
i = arg max z vj X ¢jj 3)

i =

j=1

Then, the cluster C; is updated such that ¢;; =

IZXC,','+VJ' .
——L ifv;#0
n+ vl /

nXxcj .
— =Y _ " otherwise
n+ vl

where 7 is the total number of transactions in C;. After iteratively
grouping all the SCD records, the clustering results are acquired
and analysed in the following section.

3.6 Clustering results and analysis

After the clusters were created for all data combined, the data sets
of 2010 and 2014 can be classified accordingly. Then, we can get
the numbers of the smart card records in each of the 34 clusters in
the years of 2010 and 2014. Fig. 7 demonstrates the number of
cards in each cluster. It can be noticed that the numbers of trips in
one-day, two-day and multi-day trips do not vary much over the
four years from 2010 to 2014. The number of one-day trips, around
60,000 in each cluster, is a little more than that of two-day trips,
around 50,000. Comparing to the clusters belonging to the multi-
day trip group, the one-day and two-day trips occupy the most in
the total trips. It reveals that more passengers in Beijing choose to
use public transit occasionally, mainly in one day or two days. The
number of multi-day trips (about 30,000 in each cluster) is the
least. This makes sense that fewer passengers would ride public
transit vehicles or metros on multiple days in a week if they are not
commuters. It should be noted that although special case, like

Reachability Distance
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Fig. 7 Number of smart cards in each of the 34 clusters in 2010 and 2014

misclassification, may exist in the clustering results, the overall 4 Mobility and stability analysis
analysis can hardly be influenced with the help of the huge size of
the data set.

Almost, all the towering bars in Fig. 7 belong to the commuting
trip group. This group, whose travel patterns are shown in the
commuting trip group in Fig. 6, clearly represents the main
members of public transit riders, namely the commuters who take a
home-to-work trip in the morning and go back home in the evening
every weekday. One interesting result is that the number of
passengers belonging to the commuting trip group nearly doubled
from 2010 to 2014. There are two potential reasons leading to this
huge increase in commuting trips in Beijing. One is that public
transit became more convenient from 2010 to 2014. As we
investigated, during this time period, Beijing metro constructed 8
more lines into 15 lines in total and the total metro length increased
rapidly from 228 to 465 km. The other reason is the ground
transportation in Beijing became more congested and forced some . . 7. -
people to choose public transit, since the total number of private section, we analyse passenger's mobility and stability pattern based

vehicles in Beijing increased from 2.9 million in 2010 to 4.3 on ~ temp orgl inforn_latior} combining  some background
million in 2014 socioeconomic factors listed in Table 2.

Mobility and stability patterns of people living in metropolitan
areas are really hard to measure due to the huge number of
residents and incomplete methods to probe all the population. As
mentioned by many studies [1, 7, 17], utilising SCD collected by
AFC system is a nearly ideal solution of this problem, since public
transit is used by a large proportion of urban residents and AFC
system can record their travel details. However, we still need to
consider the influence of many other factors, including residents
age distribution, social scale, per capita income, type of job, city
size and so on, to analyse transit passengers’ travel behaviours.
Since the datasets of 2010 and 2014 are selected according to the
same smart card IDs, the mobility and stability of fixed passengers
can be reflected by the changes of their travel patterns between
2010 and 2014. Passengers’ travel patterns are represented by the
recorded transaction time when they using public transit. In this
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Table 2 Social economics factors in Beijing

Year Population Population density Private vehicles Bus volume Metro volume
2010 17.55 mil. 1224 person/km2 2.97 mil. 5.165 bil. 1.423 bil.
2014 21.15 mil. 1498 person/km? 4.25 mil. 4.843 bil. 3.205 bil.
Table 3 Transition matrix of extreme travellers

2014
2010 EB NO TI RI NE SUM
EB 1286 206 535 82 7605 9714
NO 299 2550 2200 153 30,006 35,208
TI 376 996 9488 182 48,406 59,448
RI 93 198 677 275 7351 8594
NE 8780 26,357 82,630 3977 1,646,118 1,767,862
SUM 10,834 30,307 95,530 4669 1,739,486 1,880,826

EB: Early Birds, NO: Night Owls, TI: Tireless Itinerants, RI: Recurring Itinerants and NE: Non-Extreme Travellers.
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Fig. 8 Heatmap of the 34 clusters’ transition matrix

4.1 Extreme travellers analysis

According to the classification criteria proposed in Table 1, the
transition matrix of the four types of extreme travellers (EB, NO,
TL RI) from 2010 to 2014 is generated and shown in Table 3. The
numbers of extreme travellers in 2010 (141,340) and 2014
(112,964) are both very small compared to that of non-extreme
travellers. In addition, 84% of the extreme travellers in 2010
converted into non-extreme travellers in 2014, which means the
stability of extreme travellers’ live pattern cannot last for a long
time.

However, among the four types of extreme travel patterns, it
still can be found that the most passengers in the EB, NO, and TI
groups in 2010, with the amounts of 1286, 2250 and 9488, staying
in the same groups in 2014. Hence, that means passenger with an
extreme travel pattern is more likely to keep the original travel
pattern other than to convert into other extreme patterns. It also
meets the findings of the previous work [3] that most of EB, NO,
and TI are full-time workers, implying full-time worker will less
likely change their jobs (also travel pattern) compared to the
unemployed.

4.2 Non-extreme travellers analysis

4.2.1 Fine-grained analysis: By acquiring the numbers of
passengers of 34 clusters in 2010 and 2014, the transition
(mobility) matrix of these clusters is calculated and demonstrated
by a heatmap shown in Fig. 8. In this heatmap, the brighter the grid
is, the more passengers belong to this grid. We can easily catch
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sight of brighter parts (green, blue and white parts) and find them
mainly distributed in cluster 17, cluster 28 and cluster 30 in both
2010 and 2014, which belong to the commuting trip category.

Especially for the green and white grids (C7 - 17, Ci7- 2, Cos = 17
and Cy _. ), the numbers of trips in these grids are several times
larger than that of other grids. This reflects the travel pattern
stability of the passengers belonging to the commuting trip
category. These four grids’ weekly profiles are demonstrated by
heatmaps in Fig. 9. Although their morning and evening peak
hours have a deviation of one hour, the stability can be reflected by
the almost same trip occurrence time distribution and the same
time intervals between morning and evening peak hours. Their
temporal profiles also present most commuting trips of passengers
in Beijing are distributed mainly from Tuesday to Friday. It is
interesting to explore why commuting passengers tend to ride
public transit on weekdays except for Monday. A possible
explanation is the Monday morning syndrome, which means some
people feel even more tired out on Monday than on Friday after the
relaxation over the weekend.

There are also some blue grids distributed in the one-day trips
region (cluster 9—15). The heatmap shows the mutual transitions
between one-day trip category (cluster 9-15) and commuting trip
category (cluster 17, 28) happen a lot. Passengers in the group of
one-day trip category are regarded as the ones using public transit
occasionally. This transition shows passengers change their public
transit usage patterns from occasional to regular on weekdays. This
situation can be the result of many reasons, like changing jobs or
working locations, earning enough money to buy a car, or taking
metro to work instead of driving. Fig. 10 shows the percentage of
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Fig. 9 Heatmaps of the mutual transition between cluster 17 and cluster 28 in both 2010 and 2014
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Table 4 Transition matrix of non-extreme travellers

2014
2010 O T M C SUM
0o 119,270 193,290 84,311 31,864 428,735
T 164,817 298,667 142,436 48,043 653,963
M 64,449 142,399 76,769 20,038 303,655
C 36,642 79,266 47,757 11,812 175,477
SUM 385,178 713,622 351,273 111,757 1,561,830

O: One-day trip, T: Two-day trip, M: Multi-day Trip and C: Commuting Trip.

passengers who rode a metro at least once a week in each cluster.

The average percentage in 2014 is apparently higher than that of
2010. Further, as shown in the figure, the percentages of
passengers in the commuting clusters (17, 28, and 30) reach the
peaks in both lines of 2010 and 2014. This means commuting
passengers may be the most stable group who are most willing to
transit by the metro.

4.2.2 Coarse-grained analysis: The transition matrix of the four
groups of non-extreme travellers is also counted and shown in
Table 4. Each component of the transition matrix demonstrates the
number of passengers transition from one group to another.
Analysing the transition between different groups provides a new
perspective to analyse passenger's mobility and stability. However,
only with SCD, we cannot prove our conjectures. Hence, to better
understand the mobility and stability of passengers, we combine
socioeconomic statistics data of Beijing in both 2010 and 2014 [26,
27], shown in Table 2. From 2010 to 2014, the population of
Beijing increased by 3.6 million and the population density in the
urban area rose from 1224 to 1498 persons per square kilometre.
Along with the growth of population, the total number of private
vehicles in Beijing increased from 2.97 million to 4.25 million. All
these factors show that Beijing became more crowded in the urban
area and more vehicles led to more congested ground
transportation after 2010. As for the transition matrix, the ratios of
components in each row of the transition matrix are very close
(approximately O:T:M:C=6:14:7:2), implying the overall travel

8

patterns of passengers in Beijing did not change much from 2010
to 2014. Although the population and the number of vehicles
increased a lot in Beijing, the travel patterns of public transit riders
tend to be stable. However, as Table 2 indicates, the total volume of
passengers riding metros doubled during the four years, while the
volume of passengers taking buses decreased a little bit. This
unusual decline might be the result of the rapid construction of the
Beijing Metro System targeting at mitigating congestion brought
by the increasing population and usage of private vehicles.
However, as revealed by the transition matrix that the whole non-
extreme travellers nearly keeps the same travel patterns. That
means if the passengers’ travel demand keeps at a similar level,
constructing new metro lines may not be able to fundamentally
solve the congestion problem.

4.3 Discussion on mobility and stability

Analysing SCD from different temporal scales can provide
different points of view to understand the mobility and stability of
transit passenger's travel behaviour. The mobility and stability are
relevant and a passenger's weekly travel records show his/her
short-term mobility patterns, yet the change of whole passengers’
mobility patterns over years may imply the unchangeable of their
lifestyle or social status. Along with the increase of population,
transit availability, and urban size in Beijing, inhabitant's travel
pattern changes a lot, but the distributions of different types of trips
nearly keep the same. This reveals that individuals’ short-term
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mobility integrates together and forms the population's long-term
stability. One interesting phenomenon is that the total mileage of
Beijing metro doubled from 2010 to 2014, during which the
number of commuting trips also nearly doubled, as shown in
Fig. 7. This cannot be the coincidence, since travel behaviours of
inhabitants should be largely determined by the general
environments, public infrastructure, and services of the city. The
aforementioned fine-grained and coarse-grained comparisons of
passengers’ transit profiles between 2010 and 2014 both highlight
trip category transitions between the 34 clusters and the four
groups, which presents the distinctive long-term travel pattern
dynamics.

5 Conclusions

SCD provide us with new perspectives to observe the operation of
our cities. In this paper, we analyse the temporal travel pattern of
transit passengers in Beijing by clustering the SCD. To better
analyse the SCD, we define a metric, i.e. TD, to measure the
similarity or difference between passengers’ travel patterns by
considering both time difference and frequency difference between
SCD records. We also propose a simplified smoothed OPTICS
clustering method to cluster SCD. Comparing to the classical
OPTICS methods, the SS-OPTICS needs fewer parameters and
generates better clustering performance. We cluster the SCD based
on different grouping granularities to analyse the long-term
mobility and stability of transit passengers. By combining some
socioeconomic data, we present several analyses about residents’
temporal mobility and stability to elucidate the interdependence
between mobility and stability of transit passengers’ travel patterns.
Extreme travellers are most vulnerable that the stability of extreme
travellers’ life pattern cannot last for a long time. According to
clustering outcomes and our analyses, non-extreme travellers’ high
mobility is shown by the transition between different fine-grained
clusters. However, the stability of their travel patterns is also
obvious based on coarse-grained travel pattern categorisation.

In the future study, the proposed TD is very suitable for
measuring the similarity of time series with specific physical
meanings, like the passenger's travel record sequences in this study.
Since the proposed SS-OPTICS algorithm can generate optimal
clustering results, it can also be applied in transit analysis related
applications. In addition, several improvements can be made based
on the work presented herein. Firstly, the accuracy of SCD can be
enhanced in the future by adopting robust methods to mitigate the
deviations of boarding and alighting time. Secondly, the proposed
SS-OPTICS algorithm can be improved aiming to find a better way
to define the boundaries of clusters. Thirdly, more fine-grained
socioeconomic and geospatial data can be incorporated in the
analysis.
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