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Abstract: Most existing human mobility literature focuses on exterior characteristic of 

movements but neglects activities, the driving force that underlies human movements. In this 

research, we combine activity-based analysis with a movement-based approach to model the 

intra-urban human mobility observed from about 15 million check-in records during a yearlong 

period in Shanghai, China. The proposed model is activity-based and includes two parts: the 

transition of travel demands during a specific time period and the movement between locations. 

For the first part, we find the transition probability between activities varies over time, and then 

we construct a temporal transition probability matrix to represent the transition probability of 

travel demands during a time interval. For the second part, we suggest that the travel demands 

can be divided into two classes, locationally mandatory activity (LMA) and locationally stochastic 

activity (LSA), according to whether the demand is associated with fixed location or not. As a 

result, there are three trip patterns judged by the combination of predecessor activity type and 

the successor activity motive type, being associated with a different decay exponent. To validate 

the model, we adopt the mechanism of agent-based model and compare it with the observed 

pattern from the displacement distance distribution, the spatio-temporal distribution of activities, 

and the temporal distribution of travel demand transitions. Results show that the simulated 

patterns fit the observed data well, indicating that these findings open new directions for 

combining activity-based analysis with the movement-based approach using social media data.  
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Introduction 

The widespread use of location-aware devices, including smart phones and GPS (Global 

Positioning System) enabled cars, has provided powerful tools for collecting large volumes of 

time-resolved locations of individuals [1]. By exploring and analyzing the characteristics of huge 

amount of individual location data, the intra-urban human mobility could be potentially depicted. 

At present, human mobility has received enhanced understanding from a wide range of fields, 

such as urban planning [2,3], traffic forecasting [4], epidemiological models of disease spread 

[5,6] and location-based recommender systems [7,8]. 

Previous studies have concluded that intra-urban human mobility shows a high degree of 

temporal and spatial regularity. Far from being random, intra-urban mobility can be predicted by 

a number of factors [9,10]. Furthermore, a number of analytical models have been proposed to 

explain and model the intra-urban human mobility patterns, including the gravity model [11], the 

generalized potential model [12], the intervening opportunities model [13], the rank-based 

movement model [14] and the radiation model [15]. In practice, these models have been 

operated from multiple perspectives such as geographical heterogeneity and distance decay [1], 



2 
 

population density [15], geographical and social distances [16], urban morphology [3] and the 

spatial distribution of venues [14]. Such analyses can be summarized as movement-based 

approaches, which do not take into account the individual’s travel demand. Because intra-urban 

mobility has not yet been closely inspected from an activity-based perspective, the diversity of 

travel demands that spur movement have been largely neglected [17]. In contrast, the 

activity-based approach treats travel demand as the driving force for human mobility, thus 

differentiating individuals from random walkers in exploring physical space [15,18]. Moreover, 

since the sequence of activities determines the mobility patterns [17], this approach has brought 

about new perspectives on human movement in urban area and has been widely used in 

transportation planning, i.e., to assess the impact of altered bus schedules [19] or to analyze the 

scaling laws for the movement of people [20].  However, due to the logistical restraints of 

recording activity information, much research on activity-based analysis currently is conducted 

through travel diary datasets collected by census and questionnaires on a small scale , resulting 

in both tremendous time and financial cost [21]. In order to reflect the activities within an urban 

area, some research has utilized land use data information [4,22], assuming that every basic land 

parcel keeps the same service function all the time. Of course, this assumption does not always 

conform to reality. One unit may satisfy various travel demands at the same time. Moreover, the 

major function of one cell may vary over time. For instance, one commercial cell could include 

restaurants, shopping malls and office buildings. Most consumers are likely to arrive at this zone 

for work in the morning and for shopping in the evening. Additionally, the activity-based analysis 

seldom considers the distance decay effect when exploring and evaluating the intra-urban 

human mobility patterns [23]. Although Hammadou et al. (2003) have measured the relationship 

between the distance decay and the activity-chain, they do not establish a reasonable model to 

explain the observed pattern [24]. Thus, a wide gap exists between activity-based analysis and 

movement-based approach.  

Fortunately, since social media, such as Foursquare, Facebook, Twitter, are widely used, hundreds 

of millions of users have an ability to share their current location and activity information by 

check-in [25]. Different from cell phone and car trajectories data derived from GPS trackers, 

check-in data has two unique features. First, check-in records not only contain the location but 

also include information about the user’s motivation (what he/she is doing at the location). 

Second, the temporal check-in sequence of a specific person can be viewed as his/her mobility 

trajectory. Although both the existence of fake check-ins, which occurs when users are not 

actually at or near the venues where they have checked in, and the limitation of age group 

(http://www.factbrowser.com/tags/foursquare/) would confine the scope of check-ins research 

on human mobility, check-in data has the ability to uncover human mobility according to some 

mechanisms [8]. A number of recent studies have been conducted that focus on check-in 

behaviors. Scellato et al. analyzed the socio-spatial properties of individuals using check-in 

records [26]. Gao et al. integrated social-historical ties to model users’ check-in behavior [27]. 

Pelechrinis et al. and Preo et al. studied the patterns across activities transition for check-ins 

[28,29]. However, existing research does not pay much attention to activity temporal 

characteristics and their underlying geographical constraints. Our paper emphasizes the fact that 

check-in data has the capacity to bridge the gap between activity-based analysis and 

movement-based approaches in modeling intra-urban human mobility.  

app:ds:population
app:ds:density
app:ds:scope
app:ds:of
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In this paper, more than 15 million social media check-in users are investigated during one year 

in Shanghai. We find that the successor activity of an individual varies over time and is affected 

by the predecessor activity purpose and time. Additionally, the activity can be divided into two 

classes: locationally mandatory activity (LMA) and locationally stochastic activity (LSA), according 

to whether the demand is associated with a fixed location or not. As a result, there are three 

kinds of trips depending on different combination of activity types. After analyzing distance 

distribution of the three trip patterns, we discover these patterns differ in their distance decay 

exponents. To interpret the observed patterns, we construct an activity-based model that 

integrates both activity-based and movement-based approaches. Adopting the mechanism of 

agent-based modeling, the result shows that the simulated patterns fit the observed data well. 

Materials  

1 Dataset  

Analysis on the intra-urban movement is extracted from 15,213,360 social media check-in 

records of 257,278 users across 97,324 venues collected during the yearlong period from 

September 2011 to September 2012 in Shanghai. The data used in this study can be shared with 

other researchers upon request. These records are also part of the check-in data set that has 

been previously applied in an analysis of inter-urban trip and spatial interactions[30]. Because 

each check-in is not only associated with a specific geo-tagged venue (e.g. restaurants, shopping 

malls, airport terminals and schools) but also correlated with a precise geographic coordinate 

attribute including latitude and longitude, the user’s demand of movement can be identified. By 

considering the heterogeneous distribution of check-ins, we choose the central part (50×35km2) 

of city for the study (Figure 1a) and visualize the spatial distribution according to different 

activity types (Figure 1b).  

 

 

Figure 1. Spatial distribution of check-ins and the study area. (a) The study area in Shanghai. The 

red lattices represent the study area, and covers two airports, Pudong airport and Hongqiao 

airport. (b) Spatial distribution of check-ins by activities in the study. One check-in record is 

geo-referenced as one point according to its location. Different colors of the points denote the 
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different activities. 

2 Filtering Check-in Records 

Although most social media services provide some mechanism to prevent the emergence of fake 

check-ins, invalid check-ins and trips still exist. For some reason, a person staying home may post 

a check-in record indicating that he (or she) is at a restaurant. These instances hamper the 

usefulness of data for exploring intra-urban human mobility patterns and must be eliminated 

because of the discontinuous characteristic of their check-in sequence. We proposed five criteria 

to filter out the fake check-ins and trips: (i) the location of check-in is not in the study area; (ii) 

the distance between the location of declared check-in venue and the location of user’s 

cellphone GPS coordinates is greater than 500 m; (iii) the user who has only one check-in. After 

extracting each individual spatio-temporal trajectory (consecutive check-ins), we segment the 

trajectories to trips datasets and remove the anomalous trips according to the following criteria 

(Figure 2a): (iv) the length of displacement is less than 100m or the time interval is greater than 

12 hours (Intuitively, if the time interval is greater than 12 hours, these two activities are 

regarded as a low correlation and should be segmented into different trips.); (v) the rate of 

speed is faster than 431 kilometers-per-hour (or faster than a maglev train). As displayed in 

Figure 2b, the original individual’s check-in trajectory is comprised of eleven check-in points, 

according to the above criteria, only five trips are finally obtained. 

 

 

 

Figure 2. Criteria for extracting trips. (a) Two steps for extracting trips from one individual 

check-in trajectory. A1A2A3A4A5A6…is one individual trajectory sequence. (b) The visualization for 

applying the criterions into the anonymous individuals’ trajectories. The blue line is the original 

check-in trajectory. When segmenting this trajectory to trips, we filter the check-in pairs that the 

speed is faster than 431 km/h, such as A3->A4 and A7->A8; or time interval is greater than 12 

hours, such as A2->A3 and A9->A10; or the displacement is less than 100m, such as A4->A5. 

app:ds:maglev
app:ds:train
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3 Determining Lattice Size 

When analyzing the check-in data, the urban area is divided into square lattices, and a trip length 

can be approximated by the distance between centers of cells that the predecessor and 

successor points place in. The merit of this approach is that we can construct a continuous 

representation for human movements so that the interpretation model can be built. Obviously, 

the deviation of the trips’ displacement will become larger and larger with the increasing size of 

the lattice. However, if the size is too small, it is also inappropriate, because the patterns in the 

intra-urban human mobility could not be remarkably unraveled among different regions and 

increase computing costs [5]. As shown in Figure 3, if the size of lattice is greater than 500m, the 

deviation is obvious comparing to the real distribution of trip displacements. So the lattice cell 

size is fixed as 500m in this paper. 

 

Figure 3. Distribution comparison among approximated distances in different lattice sizes and 

actual distances. The 1000m lattice has more serious deviation than other two lattices 

comparing to the real distances, and the deviation of 500m is nearly the same as the 100m’s. 

4 Categorizing Travel Demands 

The check-in data have the advantage over other GPS-enabled data (such as taxi trajectory data 

or mobile call records) in indicating the purpose of individual travel with the help of demand-tags. 

However, some demand-tags signify a similar purpose: for example, dining can be expressed as 

western food, Chinese food, snacks, fast food and so on. Therefore, the categorization of travel 

demand is indispensable for the emergence of regular mobility patterns. 

Much research on the categorization of travel demand (or the type of venue) for intra-urban 

human mobility has been conducted. Bagrow and Lin classified the travel destinations as 

residential subdivision, government office, hospital, school, park, shopping place (including 

shopping malls, super markets, etc.), hotel, restaurant, and factory[6]. Similarly, the travel 

demands may be regarded as one of the following types: residential areas, workplaces, 

commercial area, recreation, education places and transport [2]. Ben-Akiva et al. simplified the 
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categorization to be residences, workplaces and others [31]. Moreover, Ye et al. analyzed the 

temporal-sematic interaction for each travel demand [32]. In this research, considering the 

temporal characteristic of travel demand [6], we group the travel purpose into six categories: 

home (H), transportation (Tr), work (W), dining (D), entertainment (E) and other (O). 

Methods 

1. Model Framework 

Let M= {m1, m2, ⋯} denote the domain of travel demands, and T= {t1, t2, ⋯} denote the collection 

of time intervals. As the study area has been assumed to be divided into squares, the location, 

each square could be marked with a certain number ranging from left to right and from bottom 

to top, representing as L. 

Hence, one activity A is defined as a triple (m, l, t), where m M , l L  and t T , so that an 

individual trajectory could be represented as a sequence of activities {A1, A2, ⋯}. In general, the 

trajectory is also regarded as the collection of trips [1,30]. Similarly, in our model, we also 

segment the trajectories into trips datasets R= {R1, R2, ⋯}. 

One trip Rk is defined as a vector including two activities <Akp(mkp, lkp, tkp), Aks(mks, lks, tks)>, where 

Akp is the predecessor activity, and Aks is the successor activity, [1, ]k K , ,kp ksm m M , 

,kp kst t T , 
kp kst t  and ,kp ksl l L ; K is the number of trips. If not taking into account location, 

a trip Rk could be viewed as a transition between two travel demands with temporal information, 

for which use the term time-dependent travel demand (TTD). A typical example of TTD is 

“shopping in afternoon”. The transition between two TTDs is defined as 

' ' ( , ), ' ( , )k kp kp kp ks ks ksR A m t A m t  . 

In order to interpret the observed movement patterns, a model that integrates both the 

activity-based and movement-based approaches is proposed. We assume that the probability of 

the transition between TTDs ( 'kpA and 'ksA ) is location independent, thus the transition 

probability between two activities Akp and Aks, denoted by P(TpA), could be decoupled into two 

parts, the transition probability TpM between TTDs during the specific time period and the 

transition probability TpL between locations. When the successor travel demand mks and 

successor time tks have been identified (or 'ksA  has been identified), the individuals then will 

determine the successor location lks. Hence, the probability of the transition between two 

activities Akp and Aks is denoted by: 

( ) ( ) ( | )A M L MP Tp P Tp P Tp Tp                         (1) 

or 

' ' '( ) ( ) (( ) | )kp ks kp ks kp ks ksP A A P A A P l l A                   (2) 
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First we focus the ' '( )kp ksP A A . Transitions between travel demands have been previously 

studied in human movement [29,33] and assumed that transition probability from one travel 

demand to another was not influenced by time. However, this proposition does not always 

match with reality. Both the demands for breakfast and supper can be regarded as dining. 

However, a person is likely to go to the workplace after breakfast but look for entertainment 

after supper. Hence, we have to take into account the time dimension and use the TTDs instead 

of time-independent travel demands. We defined the frequency of a TTD transition 'kR  in the 

collection 'R  as the variable ( ' )kn R  or ( ' ' )kp ksn A A , thus, the transition probability 

between two TTDs during a specific period is denoted as,  

 
' ' '

' '

' '

' '

[1, ], ,

( )
( ( , ) ( , ))

( )
kp js

kp ks

kp kp kp ks ks ks

kp jsj N A A R

n A A
P A m t A m t

n A A
  


 


      (3) 

indicating that the probability of occurrence for successor TTD mks at successor time tks is 

conditioned by mkp at time tkp.  

In terms of the transition probability '(( | ))kp ks ksP l l A  between locations, intuitively, 

activities could be divided into two classes, LMAs and LSAs, according to whether the travel 

demand associates with fixed location or not. For example, home and workplace are always 

attributed with the fixed location for an individual in his/her daily movements. On the contrary, 

dining and entertainment sites are always attributed with multiple alternatives for an individual 

to choose.  

Thus the type of demand of an activity is defined as  

if  demand m associates with fixed location

if  demand m associates with unfixed location

0,  
( )

1,  
y m


 


               (4) 

Moreover, LMA and LSA trips would be affected by different factors when one person chooses 

his/her successor activities. For example, when one goes for lunch, he/she is likely to choose a 

closer restaurant from a number of candidates. However, when the person goes home, the 

destination is determinate, no matter how far it is. Hence, we assume that LMAs would not be 

considered the locational transition probability. On the contrary, we suggest that the transition 

probability of locations is not only affected by distance decay but also geographical 

heterogeneity for the LSAs. Previous research has indicated these effects for the analysis of 

human mobility patterns. Liu et al. introduced the population density data to represent 

geographical heterogeneity in mobility demand, and used this data set to simulate mobility 

patterns within Shanghai [1]. Similarly, Liang et al. utilized the distribution of origins and 

destinations instead of population distribution in another mobility simulation [5]. But both of 

them did not take into consideration the time dimension and the travel demands and only 

focused on predicting traffic flows from one grid to another at the collective level. Differently, we 

want to explore these effects at the individual level and factor the temporal spatial intensity 

distribution of each LSA into the overall model of geographical heterogeneity. When the 

successor temporal demand 'ksA  is known, the spatial distribution of locations, where travel 
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demand mks would be satisfied at time tks, can be obtained. However, these candidate locations 

will differ in the intensity of travel demand and the distance from the user’s current location. For 

example, given a travel demand such as shopping, a number of places, including supermarkets, 

shopping malls, and stores, are available. They are with different sizes and locations, both of 

which influence the individual’s choice of next trip. For the sake of computation, the study area 

can be discretized in to square pixels. In each squares lks, the capacity for satisfying successor TTD

'ksA  is denoted as ( ' )
ksl ksn A , where ksl L . After this, the distance between the location of 

predecessor activity lkp and the location of candidate activity '

ksl  can be identified as '
kp ksl l

d


and 

the distance decay is represented by '( )
kp ksl l

g d


. Thus, the transition probability of locations is 

represented as 

'

' '

( ) 0    

( ) 1

                       1,                           

( ' ) ( ' )(( | ' ))
,  

( ) ( )

kjks kj

kp ks kj kp kj

l Ll ks l ks
kp ks ks

l l l L l l

y m
ks

y m
ks

n A n AP l l A

g d g d



  








  






    (5) 

where 
'

'( )
kj kjl L l ksn A
  represents the total number of 'ksA  in L’ and 

'
( )

kp kjkj
l ll L

g d   is the 

sum of distances from lkp to all locations in L’.  

As a result, the probability of the transition between two activities Akp and Aks is finally denoted 

by 

'

[1, ], ' , ' '

[1, ], ' , ' '

( ) 0    
( ' ' )

                       ,                          
( ' ' )

( )
( ' ) ( ' )( ' ' )

( ' ' ) (

kj

kp js

ks kj

kkp js

l L

kp ks

kp jsj N A A R

kp ks

l ks l kskp ks

kp js lj N A A R

y m
ks

n A A

n A A

P A A
n A n An A A

n A A g d



  

  






 









 '

( ) 1, 
) (d )

p ks kp kjkj
l l ll L

y m
ksg 











  (6) 

In sum, Equation 6 indicates that LMA trips only take into account the transition probability 

between TTDs while LSAs allow for not only the transition probability between TTDs, but also the 

capacities for satisfying the successor TTDs of all sites and the distance decay effect.

 
2. Simulation and Evaluation 

In order to verify our model, agent-based modelling (or individual-based modeling) [34] is 

suggested to be adopted and to reproduce the observed human mobility patterns. Agent-based 

modelling has been widely applied in the transportation analysis [20,35], emergency evacuation 

[36] and urban sprawl [37], because this approach can simulate the individual actions in time 

series and measure the outcome for the analysis of mobility patterns[38]. In the simulations, 

each individual is considered as one agent with an initial status, and the agent will determine the 

next activity according to Equation 6, when its current activity has been completed. Note that 

Equations 6 yields probabilities and we introduce the Monte Carlo method to deal with 

randomness. The output is a dataset including each agent’s simulated activity trajectory. After 
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segmenting the simulated activity trajectories into trips, we can compare the simulated mobility 

patterns with the observed ones.  

To evaluate the similarity between the simulated data and the observed data, the Hellinger 

coefficient is adopted [39]. The probability density functions of two continuous distributions are 

supposed to be p(x) and q(x) within the same domain X. Then the Hellinger coefficient is given as 

follows: 

 ( ) ( )HR p x q x dx                            (7) 

For discrete distributions, the equation is denoted as: 

( ) ( )H

x X

R p x q x


                            (8) 

Results 

In this work, the number of demand categories is |M|=6, and the number of time intervals is 

|T|=24 since one hour intervals are adopted as the temporal unit for analysis. The study area has 

been divided into 500×500m2 squares, and the total number of squares is |L|=5836 after filtering 

out water areas. By removing noise check-ins, 2,230,366 trips are extracted from the entire 

dataset, meaning |R|=K=2,230,366. With regard to LMAs and LSAs, the demands for Tr, H and W 

are regarded as the LMA, and the demands for D, E and O are considered as the LSA. Note that 

each individual in general has a fixed mode for transportation in daily life, and thus Tr is assumed 

to be a LMA.  

1 Spatio-temporal Distribution of Different Activities 

The travel purposes are grouped into six categories, as shown in Figures 4 and 5, each travel 

purpose has unique temporal and spatial distribution characteristics, which are consistent with 

common knowledge. We observe that the Tr, D and W each have two peaks that emerge during 

different periods throughout the day. The first peaks for both Tr and W appear in the period 

from 7 am to 9 am; at lunchtime, the D reaches its first peak. The W’s second peak is earlier than 

the other two’s, suggesting that most of residents are likely to go back to the office after lunch. 

The trend lines for both E and H remain at a low level during the daytime and rise after 5 pm, 

showing that the majority of users will return home or participate in entertainment after work. In 

our method, the travel purpose for school, public library, and the attraction sites are merged into 

O, which looks the same as the W. From the perspective of spatial distribution, the demands for 

W, D, E and O are mainly accumulated in the central area. But we observe that the O is more 

discrete than the other three, which is probably because the places for O are generally 

scattered. Particularly, Tr has two special hot spots, which are the Pudong airport and the 

Hongqiao airport. In summary, these six categories are proved to be good qualitative and 

descriptive explanations for intra-urban human mobility demands. 
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Figure 4. Daily temporal distribution of different activities. a) Transportation. b) Dining. c) Work. 

d) Entertainment. e) Home. f) Other. The frequency curves of Tr, D, and W each have two peaks 

that emerge during different periods throughout the day. The first peaks for both Tr and W 

appear in the period from 7 am to 9 am; at lunchtime, the D reaches its first peak. The W’s 

second peak is earlier than the other two’s. The trend lines for both E and H remain at a low level 

during the daytime and rise after 5 pm. The curve of O is almost same as the W’s.  

 

Figure 5. Spatial distribution of different activities. In order to make the spatial distribution 
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more remarkable, the kernel density estimation (KDE) method is adopted. The output cell size is 

150 square meters. a) Transportation. b) Dining. c) Work. d) Entertainment. e) Home. f) Other. 

The demands for W, D, E and O are mainly accumulated in the central area, but the demand O is 

more discrete than the other three. Tr has two special hot spots, which are the Pudong airport 

and the Hongqiao airport. 

2 Transition Probability Matrix between Travel Demands 

According to Equation 3, we construct a transition probability matrix Md between TTDs. The size 

of Md is N×N with N=|M|×|T|. The value of each cell in matrix Md is represented as 

   ( , ) , | ,j pt t

d j p i qM i q x y x m y m                        (9) 

The column unit of Md is the predecessor activity mi at time tj and can be denoted as jt

im , 

where [1,| |]i M  and [1,| |]j T . Similarity, the row unit of Md is the successor activity mq 

at successor time tp and is denoted as 
pt

qm , where [1,| |]q M and [1,| |]p T . Thus, the cell 

of Md with index (ij,qp) records the frequency of occurrence for successor activity mq at successor 

time tp conditioned on predecessor activity mi at predecessor time tj., and the Md is visualized as 

shown in the Figure 6. The value of cell, for example, (E19, D20) equals to 0.08, indicating that the 

transition probability from the predecessor activity E in the 19th time interval (i.e. from 19:00 to 

20:00) to the successor activity D in the 20th time interval is 0.08. Since the maximum time 

interval of a trip is set to twelve hours, the transition probability is negligible if the successor time 

is twelve hours greater than the predecessor time (the dark blue parts). From the vertical view 

(from the bottom to the top), the percentage of successor demands in the same time intervals 

can be obtained. For instance, the probabilities for treating entertainment and dining as the 

successor demands are relatively higher than other demands during the evening and at night. 

Likewise, from the horizontal view (from left to right), we can compare the percentage of their 

predecessor demands in the same time intervals. For example, although the transition 

probabilities for all the predecessor demands to the successor demand for dining are high during 

the evening and at night, the entertainment exposes much higher percentage than other 

demands.  
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Figure 6. Temporal transition probability matrix of activities. The horizontal axis is the 

predecessor demand and time, jt

im and the vertical axis is the successor demand and time,
pt

qm . 

The transition probability is negligible if the successor time is twelve hours greater than the 

predecessor time. Obviously, the values for both the dining and entertainment demands during 

the 7 pm to 9pm from other demands are high. Especially, a high transition probability exists if 

the successor activity is entertainment at time from 7pm to 9pm on the condition that the 

predecessor activity is dining at time from 6pm to 7pm. 

3 Displacement Distributions of Different Trip Types 

To verify the hypothesis that LMA and LSA would be affected by different factors when one 

person chooses his/her successor activity, the displacement distribution P(∆d) is investigated. 

P(∆d) plays a basic statistical role in characterizing human mobility and is considered to be 

affected by not only the distance decay, but also other factors, such as geographical 

environments [1] and population heterogeneity [40]. We assume that the spatial distributions of 

both LSAs and LMAs are influenced by the same geographical and demographic factors at the 

macro scale. Hence, LSAs and LMAs will illustrate different characteristics when comparing their 

displacement distributions. Currently, two models are often used to fit P(∆d): a power-law P(∆d) 

~∆d-β and an exponential law P(∆d)~exp(-λΔd). In terms of urban areas, recent research has 

demonstrated that the displacement distribution obeys exponential law rather than power-law 

according to mobile phone records [30], individual vehicle data[41] and taxi data[42]. Similarly, 
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as Figure 7a shows, the distribution of individuals’ movement in check-ins also follows roughly a 

straight line on a log-linear plot and reveals an exponential law with λ=0.179km-1 (R2=0.922). 

However, a small peak exists between 30km and 40km, which corresponds with the result 

observed from taxi trajectories in a previous study of the Shanghai urban area. This phenomenon 

could be ascribed to the location of the Pudong International Airport [1]. Owing to more than 

30km away from the center of Shanghai, the airport makes residents travel long distances 

without other choices. With the respect to the distance decay, this peak also reflects that some 

activities are not affected by the distance decay to some extent. Therefore, it is necessary to 

divide the activity into two classes according to whether the demand associates with fixed 

location or not, thereby there are three trip patterns based on the types of the predecessor 

activity and the successor activity. If both the activities are classified as LMAs, the trip pattern is 

regarded as a pure LMA trip. Likewise, the trip pattern is considered to be pure LSA if both 

predecessor and successor activities can be classified as LSA. Last, if the two kinds of activities 

are different, the pattern can be deemed as a hybrid trip. As displayed in Figure 7b, the 

distribution of the pure LSA trip distance is more sharply decayed than the other two and have a 

very good fit for the exponential law with exponent λ=0.264km-1. Both the pure LMA and pure 

LSA patterns have hardly any peak, and more importantly, the plot reveals that the human 

mobility with different trip patterns will be affected by different distance decay effect.  

Hence, the hypothesis that LMA activity would not be affected by the distance delay is proved to 

be correct for interpreting the intra-urban human mobility when one person chooses his/her 

next activity. Therefore, if the successor demand is locationally mandatory, the person will get in 

a specific location directly without the transition probability of locations’ issue. 

 

Figure 7. Distribution of trip distance. A) The distance distribution of all trips. B) The distance 

distribution of three trip patterns. The exponent of pure LMA trips is 0.134 km-1 (R2=0.713) 

whereas the pure LSA’s is 0.264 km-1 (R2=0.9312). The exponent for hybrid pattern is 0.191 km-1 

(R2=0.814). 

4 Simulation Results 

Considering the computing cost, we initialize 120,000 virtual agents and randomly place each of 

them into a 500×500m2 square as the agent’s home, according to the population distribution of 

Shanghai, for which we use the LandScanTM 2008 High Resolution Global Population Data Set 

(http://www.ornl.gov/sci/landscan/). Then each of the agents’ activity is assigned from the 
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collection M at random. Finally, we set the beginning time to 6 o’clock and make each agent 

individually assess its situation and move according to the proposed model. For LSA, we adopt 

the frequency of check-in which can fit the successor TTD to represent the capacity of satisfying 

successor TTD in each square. During the simulation, given the user's current location, some 

trivial places but close places may exist. Since we use a power-law distance decay function, d-β is 

rather high when d is small and thus overestimates the impacts of such places. Therefore, we 

adopt a threshold µ to filter squares that have lower frequencies of TTD than µ when an 

individual chooses the next stop. In this research, µ is set to 10 by trial and error. Additionally, we 

simplify the relationship between the distance decay versus the activity transition and utilize the 

same distance decay function g(d), since Liang et al. suggested that the power law functions are 

more accord with the reality than exponential functions in the simulation [5]. Likewise, Liu et al. 

pointed out that the observed displacement distribution of intra-urban trips can been well 

interpreted using a power law distance decay function [1]. Hence, we set g(d) to be d-β in the 

simulation, where β is the distance decay parameter. Different exponent values between 1.0 and 

2.0 were tried, and about 2,100,000 trips are generated for each exponent. We found the 

observed pattern could be best fitted when β=1.62. Finally, we segment the agents’ simulated 

activity trajectories into trips and compare it with the observed ones from displacement 

distribution, spatial and temporal distribution and TAD distribution, respectively. 

As shown in the Figure 8, the Hellinger coefficients for distance distributions are 0.8829, and a 

peak also exists between 30km and 40km indicating that the proposed model interprets the 

observed distance distributions well. However, the distance distribution cannot ensure the 

location of activity is correct, therefore, the spatial cluster is brought in to examine this issue. As 

Figure 9 shows, the spatial distribution of the simulated successor activities is largely similar to 

the observed one with Hellinger coefficient is 0.8430. Besides, Figure 10 illustrates that the 

simulated data’s trend line matches well with the observed one, and the Hellinger coefficient is 

0.9803. Although the simulated data’s trend line well matches the observed one, a deviation 

(about one hour) still exists between two peaks. We conjecture the reason is that the proposed 

model uses a one-hour time interval. In evening, the check-in activities are more frequent so that 

a person may check in several times at different places during one hour. According to the 

proposed model, however, the successor activities are assumed to occur in the next hour, leading 

to a delayed peak. Lastly, to verify the travel demands intensity distribution in time dimension, 

we compare the simulated results with the observed ones (Figure 11). All of simulated curves 

have high Hellinger coefficients (>0.95) comparing with the actual ones, indicating the proposal 

model can simulated the travel demands intensity in time dimension well. 
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Figure 8. Comparison between distance distributions of observed and simulated trips. The 

Hellinger coefficients is 0.8829, and a peak also exists between 30km and 40km in the simulated 

trips. 

 

 
Figure 9. Comparison between spatial distributions of observed and simulated trips. The KDE 

method is adopted, and the output cell size is 500 square meters since the lattice size is also 500 

square meters. a) The observed successor activities. b) The simulated successor activities. The 

vast majority part of the observed data can be illustrated by the simulated one, and the Hellinger 

coefficient is 0.8430. However, some parts are not fit well. We conjecture the reason is the 

individuals will choose some activities according to their own preferences, which will not be 

influenced by the geographical impacts or the distance decay effects. 
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Figure 10. Comparison between temporal distributions of observed and simulated trips. The 

Hellinger coefficient is 0.9803. In evening time, we can find a one-hour lag exists between two 

peaks. The lag should be attributed to the one-hour temporal resolution in simulations. 

 

 

Figure 11. Comparison between temporal distributions of observed and simulated category. a) 

Transportation, the Hellinger coefficient is 0.976. b) Dining, the Hellinger coefficient is 0.950. c) 

Work, the Hellinger coefficient is 0.969. d) Entertainment, the Hellinger coefficient is 0.956. e) 

Home, the Hellinger coefficient is 0.960. f) Other, the Hellinger coefficient is 0.973. Although the 

deviations still exist in the simulated ones, the value of deviations are only a few percent. Besides, 

the all the simulated results have nearly same peaks as the observed ones.  

 

Discussion 

Current human mobility studies paid less attention to activities, due to the lack of explicit activity 

information data on a large scale. Fortunately, as the social media services have become 

increasingly used in the past few years, they have become an indispensable part of many 

people’s lives to record their life footprints, including both the positions and travel demands. 

Therefore, social media check-in records have provided a unique opportunity to combine the 

activity-based analysis with movement-based approach to study the intra-urban human mobility 

patterns on a large scale. In this study, we combine the activity-based analysis with the 
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movement-based approach to model the intra-urban human mobility. By the mechanism of 

agent-based modeling, the result shows that the simulated patterns fit the actual distribution of 

observed movements well. Hence, our model has illustrated the following three aspects: first, 

the transition probability between two activities could be regarded as two parts, the transition 

probability between TTDs and the movement between locations. In addition, the travel demand 

varies over time and is affected by the predecessor activity purpose and the predecessor time. 

Last, the travel demands could be divided into two categories: LMA and LSA, according to 

whether the demand is associated with fixed location or not. When one person chooses his/her 

next stop, the LSA would be affected by not only the distance decay but also the geographical 

impacts. On the contrary, the LMA has no need to consider the transition probability between 

locations. As a consequence, there are three trip patterns, judged by the combination of 

predecessor activity type and the successor activity motivation.  

Some limitations still exist to our study. The first is the discontinuous characteristic check-in 

sequence of an individual. Since the life footprints are only recorded when the individual chooses 

to upload data, we can only obtain a subset of all the activities of an individual during a day. To 

compensate for this, we introduce a mechanism to judge whether two consecutive check-ins 

recorded by an individual constitute an activity sequence or not.  

The second issue is the time uncertainty of check-ins, because the time information of one 

check-in cannot identify the exact time when the user arrives at the venue. In order to avoid this 

shortcoming, we explore the temporal transition relationship between two types of demands 

rather than simply considering the time of check-ins as the start time, the duration time or the 

end time.  We assume that the time information of one check-in will have a significant impact 

on the attributes of a successive check-in. 

Last, we should be aware of the representativeness of check-in data, that is, the check-in users 

are not well-designed samples of the population. Young people are more likely to post check-in 

records on social media, suggesting the check-ins do not have the capability to reflect mobility 

patterns for all age groups.  

Although these limitations will confine the representativeness of check-ins records on human 

mobility research, the check-in data has illustrated the potential abilities to bridge the gap 

between activity and mobility patterns analysis, and to create models that incorporate both 

types of analysis to predict human mobility patterns.  

There is some literature on mobility patterns at the city level based on activity data (e.g. [20,35]). 

Most of such studies, however, are lack of supports from empirical movement data and do not 

pay much attention to the nature of activities. In the proposed model, human activities are 

divided into LMAs and LSAs, which play different roles in shaping human mobility patterns. The 

model is well validated by a check-in data set. Compared to existing studies, this research opens 

new directions for combining the movement-based approach with the activity-based approach 

using check-ins and enriches the theory of activity-based models to travel demand analysis with 

quantification of the transition matrix of activity. More importantly, this approach may positively 

impact practical systems and applications in urban planning, traffic management, and mobile 

location-based services from the perspective of activities. 

 

app:ds:scope
app:ds:of
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