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ABSTRACT 

 
As a vital indicator for measuring urban development, urban areas are expected to be identified 

explicitly and conveniently with widely available dataset thereby benefiting the planning decisions 

and relevant urban studies. Existing approaches to identify urban areas normally based on mid-

resolution sensing dataset, socioeconomic information (e.g. population density) generally associate 

with low-resolution in space, e.g. cells with several square kilometers or even larger towns/wards. 

Yet, few of them pay attention to defining urban areas with micro data in a fine-scaled manner with 

large extend scale by incorporating the morphological and functional characteristics. This paper 

investigates an automated framework to delineate urban areas in the parcel level, using increasingly 

available ordnance surveys for generating all parcels (or geo-units) and ubiquitous points of interest 

(POIs) for inferring density of each parcel. A vector cellular automata model was adopted for 

identifying urban parcels from all generated parcels, taking into account density, neighborhood 

condition, and other spatial variables of each parcel. We applied this approach for mapping urban 

areas of all 654 Chinese cities and compared them with those interpreted from mid-resolution 

remote sensing images and inferred by population density and road intersections. Our proposed 

framework is proved to be more straight-forward, time-saving and fine-scaled, compared with other 

existing ones, and reclaim the need for consistency, efficiency and availability in defining urban areas 

with well-consideration of omnipresent spatial and functional factors across cities. 
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1 INTRODUCTION 
 
This study is a manual for making a ‘parcel-up’ understanding of urban areas for a larger 
geographical area: urban areas here are defined as the mergence of urban parcels enclosed by roads 
with more urban activities. Dissecting the existing body of influential approaches to define urban 
areas and examining cases, it identifies a link between two dominant factors that are instrumental in 
achieving the goal. The first is the urban parcel demarcated by the roads, which could be considered 
as the basic unit of urban areas; the second is urban density, which is the key function characteristic, 
manifested in POIs density.  
 
A universal difficulty for urban studies is how a city can be defined properly (Zipf, 1949; Krugman 
1996; Soo, 2005; Batty, 2006). Urban built-up areas (urban areas in the following context) play a 
strong role in representing urban spatial development for planning decisions, management, and 
urban studies. They not only illustrate spatial patterns, such as the development levels and scales of 
the built environment, but also reveal socio-economic unevenness within the built-up areas, e.g., 
population aggregation, social interaction energy consumption, and land use efficiency, thereby 
representing how a city evolves in a complex manner (Batty, 2011). Conventional methods of 
capturing the borders of a built-up area from the top down have been applied in major cities around 
the world on a large scale mainly relying on mid-resolution sensing dataset or socioeconomic 
distributions (e.g. population density) associating with low-resolution, e.g. cells with several square 
kilometers or even larger towns/wards. However, such methods cannot be applied to most of cities 
in developing countries due to lacking necessary data (Long and Liu, 2013). Moreover, these existing 
methods still require multiple steps according to unique conditions if achieving a fine scale result is 
expected. This paper develops an automated approach for producing fine-scaled urban areas of all 
different-sized Chinese cities based on morphological and functional characteristics determined by 
road network layer from ordnance survey and points of interest (POIs). 
 

Urban area is a widely applied, discussed and referred concept but ambiguous simultaneously. In 
existing literature, it shows various descriptions, measurements and applications spanning various 
issues and spatial scales in different nations. Urban areas in US are identified as Urbanized Areas (UA) 
in a typical administrative model for spatial statistics containing the incorporated places and census 
designated places in central places and urban fringes controlling for the population density (Morrill 
et al., 1999). One similar term in Japan is Densely Inhabited District (DID) with population density 

over 4000 people per Km2. In China, the records of ‘one book and two certificates’
1
 within 

administrative areas are widely accepted (Xu and Hua, 2005). Furthermore, Urban Areas (UA) in UK 
are derived from constructions-built areas where certain real-estate densities are detected through 
satellite images or other datasets (Hu et al., 2008). On the other hand, socio-economic factors are 
also adopted to describe the active urban areas, e.g. labor force markets and commuter sheds are 
utilized to represent Metropolitan Areas (MA) in US (Berry, et, at., 1969). Despite definitions of 
urban built-up areas are highly ambiguous, well identified urban areas needs explicitly bonding the 
spatial and functional dimensions. In this sense, urban areas in this study are further understood as 
the urban extent containing urban parcels with actual usage which is reflected by the POIs. 
 
Parallel to the ambiguity of its definitions, there are various distinguished methods for mapping 
urban areas. From the morphological perspective, remote sensing images and road network have 
received increasing academic attention. Remote sensing or night-time satellite images help to filter 
non-built areas on the basis of transferring land cover information or scanned light brightness to 
indices (Henderson et. al, 2003, He et al., 2006). In addition, various geometrical characteristics of 
road networks have been introduced to identify the spatial organization of cities as physical entities, 

                                                           
1 "One book and two certificates" - containing proposal of project location, permit of land planning and permit of 
construction planning - refers to the construction approval files delivered by the government based on urban planning law. 
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e.g. road intersection density (Masucci et al., 2012); fractal indices (Shen, 2002; Tannier and Tomas 
2011,2013; Jiang and Yin, 2013); size of urban blocks (Jiang and Liu, 2012). In terms of the functional 
aspects, applying socio-economic statistics such as demographic densities (Rozenfeld et al., 2008), 
effective employment density (SGS Economics & Planning, 2011, 2012) and infrastructures 
accessibilities (Hu et al., 2008) has emerged as a standard method of defining urban areas. However, 
In case more precise outcomes with higher-resolution are expected, the disadvantages of these 
approaches are not rare as follows. 1) remote sensing data based approaches are limited by the 
time-consuming interpretation steps and the image resolution; 2) to accurately define cities, using 
the geometrical approach to directly link to specific spatial units, such as a parcel, block, or tile, is 
difficult despite of its advantage in cities with diverse sizes at an extremely large scale; 3) spatial 
statistics methods are very time consuming to prepare, limited by fine-scaled censuses, and the 
results are most likely to be altered significantly if the low survey frequency. 
 
Hence, many challenges need to be overcome before a universal model can be established. The 
foremost challenge is the question of how fine-scaled spatial units can be set and which one will be 
suitable for urban studies and planning practice. Furthermore, the data quality for different cities 
might not permit the development of a universal approach. In addition, a difficult task is finding a 
straightforward way to generate an urban indicator with consideration of various socio-economic 
aspects. 
 
Recently, these challenges of urban area delineation gave rise to methodological developments that 
address the same issue from the bottom up based on detailed street network and Volunteered 
Geographic Information. Several studies concentrated on extracting a parcel-based urban area from 
the transport layer in OpenStreetMap (OSM) (Jiang and Liu, 2012; Jiang, et al., 2013). Yet, pure road 
network-based approach is hardly effective for generating fine-grained parcels and inferring urban 
parcels using the head-tail division rule (globally applied) to reflect real urban activities. With this 
background taken into account, some studies have been conducted to utilize POIs for inferring the 
function performance of auto-generated parcels so that the urban parcels could be selected locally. 
Yuan et al. (2012) segmented Beijing into disjointed parcels through the raster-based model, and 
their functional characteristics were inferred by incorporating the POIs and the taxi trajectories. 
Long and Liu (2013) proposed an approach for automatically identifying and characterizing parcels 
(AICP) by using OSM and POIs in 297 Chinese cities at the national scale. They compared the 
efficiency and accuracy of the approach with those of other methods. Apart from previous research, 
these two studies shed light not only on the auto-generation of parcels but also on the functional 
qualification in terms of the online volunteered data e.g., POIs. However, the unevenness of the 
resolution of OSM among various cities (Hagenauer and Helbich, 2012) still limits the applicability of 
these methodologies for all cities and the resolution of the results. 
 
Compared with the quality of OSM, the ordnance survey map - a national-scale authoritative dataset 
- maintains the best completeness and coverage in all cities. Within the context of Web 2.0, the 
commercial ordinance survey data became accessible to the public in developing countries in recent 
years, which enabled all Chinese cities (big or small) to be included thus mitigating the digital divide 
existed before. High correspondence between commercial ordnance road layer and POI locations in 
the datasets of navigation firms helped us to combine the spatial and functional factors at the same 
resolution for all Chinese cities. Few relevant studies used these two datasets simultaneously to 
produce fine-scaled urban areas for all the cities. 
 
This work adopts the framework of AICP proposed by Long and Liu (2013) with the ordnance survey 
and POIs for inferring urban areas at the parcel level for all Chinese cities. A comparison between the 
road network in the survey and that in OSM indicates that the ordnance survey map produced more 
detailed information especially in medium and small cities. In response, road network in the 
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ordnance survey is imposed into the AICP model to generate more realistic urban parcels, which are 
the basic geographic units to describe urban areas of the cities. When the produced urban areas are 
overlapped with the ones generated based on other datasets, the results indicate that the extracted 
urban areas based on the ordnance survey and POIs are significantly more accurate in middle and 
small-sized cities than in major cities. Our findings also indicate that AICP could be utilized as an 
open and direct approach by inputting high-resolution and ubiquitous data to capture small parcel-
based urban areas. This study aims to offer an alternative way to understand complex urban systems 
across cities from the bottom up. This paper is structured as follows. Section 2 describes the 
datasets used in this paper. The methods and their results are introduced in Section 3 and 4. Section 
5 and 6 discuss the results and make concluding remarks of this research, respectively. 
 

2 DATA 
 

2.1 Administrative boundaries of Chinese cities 
 

 
 

Figure1 Administrative areas of Chinese cities 
 

Administrative boundaries of 654 Chinese cities
2
 - the limitations of local geographies - are applied 

to partition the whole research areas to legal cities so that ordnance survey maps and POIs can be 
curved off accordingly (Figure 1). According to Chinese administrative system (Ministry of Housing 
and Urban Development, 2012; Ma, 2005), there are mainly five levels of cities classified in this way 
including: municipalities directly leaded by the nation (MD, 4 cities), sub-provincial cities (SPC, 15 
cities), other provincial cities (OPCC, 17 cities), prefecture-level cities (PLC, 250 cities), and county-

                                                           
2 Sansha in Hainan and Beitun in Xinjiang appearing in MOHURD (2013) were not included due to spatial data availability. 

Taiwan was not included in all analysis and results in this paper.  
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level cities (CLC, 368). This system can also reflect hierarchy of these cities in terms of city size and 
population. By doing so, the research scopes are specified to administrative areas of urban lands by 
keeping the national scale in mind thereby well controlling the local situation of each city from a 
global perspective of the whole nation.  
 

2.2 Total urban area of Chinese cities 
 
Based on defined city administrative boundaries, statistics of urban area are extracted from 
MOHURD (2013) in order to allocate the total into urban parcels in each city. Until 2012, total urban 
area of 654 cities in China has reached 46,744 km2. Individual city is inferred by its statistical area 
decently (Figure 2). Consequently, our research areas in all the cities are specifically featured with 
their administrative subordination and total urban area.  
 

  
(a)                                                                                                                (b) 

  
(c)                                                                       (d) 

 
Figure 2 Total urban area in 2012 at the city level. (a) the whole China, (b) Beijing-Tianjin-Hebei (BTH), 

(c) Yangtze River Delta (YRD), (d) Pearl River Delta (PRD) 
Note: The urban expansion rate during 2007-2012 of each city is also mapped in this figure to show 

the historical urban expansion of Chinese cities.  
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2.3 Road network in ordnance survey and POIs in 2012 
 
The ordnance map is considered to be the authorized map reflecting the most urban information 
(Haklay, 2010). Urban streets, regional roads and many other detailed streets are encompassed in 
the dataset of Chinese ordnance survey map. The applied dataset of road network in this research is 
derived from the ordnance survey dataset 2013, which has been compared with online datasets (e.g. 
Google Map and Baidu Map) to prove its secured accuracy. The employed database in this study is 
made of 6,026,326 segments with the total length of 2,623,867 km (Figure 3).  
 

 
(a) 

 

 
(b) 

Figure 3 Ordnance roads of China in 2012. (a) the whole China, (b) a part of the central city of Beijing 
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POIs containing 5,281,382 points totally are gathered from business cataloguing websites.  There are 
20 types of POIs in the initial dataset, and each type refers to one detailed sort of urban activity. All 
the POIs are adopted in this empirical study to measure the land use density through calculating 
their amount for each generated parcels.  
 

3 METHODOLOGY 
 

3.1 The proposed framework 
 
Generally, the empirical framework for delineating urban areas contains three steps based on well 
propagated data: parcel generation, urban parcel selection (vector CA module) and urban area 
production (parcel mergence) (Figure 4). In the first step, all possible parcels are defined depending 
on the fine-scaled road layers in ordnance survey. Then in the following stage, the parcels are 
inferred with their geometrical and geographical properties and POIs density to automatically select 
the urban ones in a vector CA approach. Finally, all the urban parcels are dissolved and mapped 
thereby clearly generating urban areas. All these steps will be illustrated fully in the following 
sections.   
 

 
Figure 4 Flow chart of the proposed framework 

 

3.2 Generating parcels and inferring their density 
 
Parcels are important spatial units for contemporary urban planning & design and urban studies. In 
this sub-section, parcels are defined as a continuous built-up area enclosed by roads. Supporting by 
this idea, all the possible urban parcels are generated by using road layer in ordnance survey. Before 
generating parcels, the road layers should be processed according to their hierarchy respectively 
before being merged as a single layer. More specifically, all the segments are connected with 
tolerance of 20 meters, whereas street segments shorter than 200m are trimmed to avoid cul-de-
sacs. Moreover, all the width of all roads is also defined relying on their hierarchy. At last, all initial 
parcels are presented when the roads are removed from the study areas. 
 
Four properties are further calculated for each parcel. The first two refers to the geometric 
characteristics of each parcel including the size and compactness determined by the parcels’ shape. 
In addition, the accessibility is also taken into consideration as a locational variable for describing a 
parcel. Another characteristic is the functional attribute of a parcel for reflecting its actual use. POIs 
within or close to a parcel are measured as its urban density. Due to the natural unevenness of 
urban density between central cities and other ones, POIs density is further normalized and placed 
between 0 and 1 to release the heterogeneity among cities. Because of lacking further attributes of 
POIs, the popularity of POIs is assumed as the same in this study. When any substitutions are 
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available, they can be expected to approximate the intensity of urban activities explicitly. Hence, in 
the way of using road network and POIs to identify initial parcels, the spatial and functional features 
are incorporated together for further urban parcel selection. 
 

3.3 Selecting urban parcels by using vector CA 
 
Vector-based constrained cellular automata models are used for picking up urban parcels from the 
initial ones generated by road network in diverse cities. We suppose this process is similar with that 
for modeling urban expansion, which sees extensively CA applications. Apart from conventional 
raster CA model (Batty, et al, 1999), vector-based CA model here depends on irregular polygons 
rather than regular cells. In this research, each parcel is regarded as a cell with a status that is 0 
(urban) or 1 (non-urban). This can be illustrated as a formula as the following. 
 

1 ( , , , )t t t

ij ij ijS f S Con N    

 

Here, a parcel’s status at t +1 is considered as a function f of parcel’s statues and other factors at 

t.  In this function,
t

ijS
 and 

1t

ijS 

 denote to the statues of parcels at time points of t and t+1 

respectively; 
t

ij is the neighboring situation; Con refers to the constrains and the N is the amount 

of all parcels. This function can be further transferred to a detailed probability formula: 

 

( ) ( ) ( )t

ij l ij ij rP P P con P    
 

 
In this function, the possibility of transformation of parcel’s state at t is illustrated as multiplied 

product of probabilities of factors. Specifically, 
( )l ijP

 stands for the local potential that a parcel 

would convert its status from the non-urban to the urban while 
( )ijP denotes the conversion 

possibility in terms of the neighboring situations; ( )con   stands for constrains and rP
is the 

stochastic term.  
 
The proposed spatial and functional characteristics are reflected in measuring the local potential. 
This could be explained in the formula below using a logistic regression model (Wu, 2002): 
 

0

1

1
( )

1 exp[ ( )]
l ij m

k k

k

P

a a c




  
 

Where 0a
 is a constant, ka

 is an estimated coefficient responding to the spatial variable kc
 and m is 

the total amount of spatial variables. As a result, spatial and functional factors are bonded to reflect 
parcel’s state in this study. Parcel size measured in the natural logarithm of area. Compactness is 
calculated by the rate that perimeter square subdivided by area. Accessibility is abstracted using the 
minimum Euclidian distance to the city center. On the other hand, the functional factor is presented 
by applying the standardized POIs density, which is measured through calculating the rate of raw 
density in the max density in the samples. 
 
The neighboring potential for a parcel is measured by the amount of peripheral urban parcels 
around it. This can be defined as: 
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(P
W
)
ij

=

con(S
ij

t = urban)å

n
 

 

For parcel ij, 
( )t

ijcon S urban
 stands for the urban parcels within fix areas while n is the sum of all 

accessible parcels. The adjacent relation is defined as 500 m around the parcel ij. 
 
Two layers - the steep area (a slope over 25 degrees) and various water bodies, are included as the 
restrictive condition. Urban expansion is forbidden in these areas. The constraints are expressed as 

con(cell
ij

t = suitable)
 with a value of 0 or 1, where 1 indicates that there is no restriction on the 

parcel’s development as urban while 0 indicates that the parcel is forbidden to be urban.  
 

The stochastic disturbance 
P
r  in the model stands for any possible change of local policies and 

accidental errors. It is calculated using 
 

 
 

where  is a random number ranging from 0 to 1, and , ranging from 0 to 10, controls the effect 
of the stochastic factor.  

Furthermore, by comparing the measured probability  
( )l ijP

 with a fixed threshold value thdP
  , the 

parcel’s status at t+1 could be detected. If the measured value is greater than the threshold, the 
parcel is considered to be urban, if not, the parcel will stay as non-urban. This progress can also be 
presented as a binary expressions: 
 

                                                                               ∑    
 
           

 
Finally, for controlling the total area of all urban parcels, the statistics of urban area in 2012 for each 
city are applied as the upper limits for the total area of selected urban parcels.     here is the area of 

parcel ij, and         denotes to the reported total area for the city in MOHURD (2013). 
 

3.4 Mapping urban areas using selected urban parcels 
 
We need translate selected urban parcels into urban areas, considering that street spaces and small 
unselected urban parcels surrounded by urban ones are also included in urban areas in planning 
practices. In order to map the urban areas of all cities in China, the selected urban parcels are re-
merged into the integrated urban lands in ESRI ArcGIS using the toolbox Aggregate Polygons to 
present the urban areas for each city (see Figure 5). This tool is used for moderate scale reduction 
and aggregation on selected urban parcels. Aggregation will only happen where two parcels are 
within the specified aggregation distance to each other. According to the facts of Chinese urban 
parcels, the distance to be satisfied between parcel boundaries for aggregation to happen is set 500 
m and the minimum area for an aggregated parcel to be retained is 1 ha. In addition, orthogonally 
shaped output urban areas are created for preserving the geometric characteristic of anthropogenic 
urban parcels. The projected approach is conducted in all 654 reported cities individually to speed 
up the parcel aggregation process. Urban areas of each city can then be mapped based on selected 
urban parcels.  
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Figure 5 Illustration on converting urban parcels to urban areas (combining polygons within a 
specified distance of each other into new polygons).  
 

3.5 Model validation 
 
For well validating our proposed model, self-validation and external justification are progressed 
separately and cross-verified the applicability in delineating urban areas for various cities. On the 
internal dimension, all cities are ranked to detect the scaling law of city size horizontally and on the 
other hand, urban parcels within typical cities at various administrative levels are also rated for 
finding the linear relation on a logarithmic scale. In addition, the automatic generated result of 
urban areas for all the Chinese cities is compared with the outcomes produced by several classical 
methods reviewed in the introduction section based on geographical coverage datasets containing 
remote sensing images, census-based population density and road intersection density. 
 

3.6 Constrained inversion 
 
A whole process of automatic identification of urban areas could be described as ‘holistic 
constrained inversion’ of urban areas (Figure 6), which is a method for speculating very large and 
complex urban areas based on a relatively small amount of observed data. To avoid subjective 
factors setting, this model requires the verified effective constraints/parameters in some typically 
observed cases at the first stage. This process could be thought to be a ‘partial inversion’, a way to 
generate key constraints in defining urban areas. In this study, the urban density measured by POIs 
density is proven to be a key factors in identifying urban parcels in each city. In so-called ‘holistic 
constrained inversion’, there are three steps: the first part is about parcels segmentation while the 
second part is for parcels’ mergence. These two steps interact with each other by using POIs density 
and other factors to select urban parcels as shown above. This proposed open framework has 
several potentials in addressing the questions of identifying urban areas: first, it offers a method to 
generate parcel-based urban areas in a large scaled manner relying on universal rules discovered in 
typical samples; moreover, it can be used as a reference to validate the surveyed urban areas; last 
but not the least, it could further implies the potential role of omnipresent dataset on duplicating 
urban areas from a vast scope. Therefore, instead of only promoting our model of delineating urban 
areas based on POIs and road network, we are also advocating an open framework for presenting 
‘parcel-up’ distributions of urban areas by combining holistic and partial inversions at different 
scales. That is to say, the model discussed in this paper is an open system combining local equation-
based analysis and global simulation, which is ensured for future development in the background 
that location-based data is increasingly available.  
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Figure 6 Constraints inversion of identifying urban areas 
 

4 RESULTS 
 

4.1 Model calibration for vector CA model 
 
Logistic regression is conducted for calibrating the weights for constraints in the proposed vector CA 
models. But due to the data availability, it is nearly impossible to calculate the weights of controlling 
factors for each city thereby reflecting the spatial heterogeneity between cities. Hence, the 2010 
parcels dataset in Beijing City manually prepared by urban planners in BICP is applied as a typical 
example of all the other cities. It covers an area of totally 12,183 km2 at a very fine-scaled urban 
parcel scale (Yanqing and Miyun counties in the Beijing Metropolitan Area are excluded from Beijing 
City). There are totally 52,330 parcels reported, among which 36,914 parcels are identified as urban 
ones.  
 
According to the result of binary logistic regression (Table 1), 78.9% of all parcels can be explained by 
the generated function. And all factors except compactness have passed p test, revealing that they 
are significantly related to the differences between non-urban and urban ones. This logistic 
regression results have been employed in vector CA models for all the Chinese cities. In order to test 
the accuracy of this model, the generated results of Beijing City by the CA model was compared with 
the BICP dataset again, and then an overall explanatory ability of 81.5% indicates that the 
applicability of our model in delineating urban areas in terms of urban parcels. 
 

Table 1 Binary logistic regression results for BICP parcels 
 

Name Coefficient S.E, Sig. 

Constant 5.359 .058 0.000 

Natural logarithm of parcel size -0.306 .006 0.000 

Distance to the city center -0.099 .001 0.000 

POIs density 3.431 .085 0.000 
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4.2 Selected urban parcels 
 
The proposed constrained vector CA model was conducted in all 654 reported cities in China, in 
which a sum of 707,330 urban parcels with 51,286 km2 in area were detected and labeled as ‘urban’ 
among all 851,054 initial parcels (Figure 7). The average numbers of urban parcels in cities on 
various administrative levels differentiate with each other significantly. Precisely, there are 1411 
urban parcels in MD averagely, followed by 407 in SPC, 199 in OPCC, 79 in PLC and 26 in CLC 
respectively. When scrutinizing these statistics, the more population or higher administrative ranks 
the cities occupied, the greater number of urban parcels they will have. In other words, the scaling 
laws of the population or city size also can be significantly observed in terms of the amount of urban 
parcels in each city.  
 

 
 

Figure 7 Selected urban parcels for all Chinese cities 
 
Scaling law is a universal rule not only for natural phenomenon but also for urban areas. On a 
logarithmic scale, this relationship between the size of urban areas and their frequency distribution 
should be linear. It also enable to self-validate the proposed vector CA models for each city in this 
paper (Vilet et al., 2009). In order to verify the performance between cities, the size (in term of the 
number of urban parcels in each city) of all cities is firstly plotted against their ranks (figure 8a). A 
shape of long tail distribution can be evidently recognized which reveals that there are far more 
cities with fewer urban parcels than those with a large number of urban parcels (Jiang, 2013). When 
it comes to the log-log distribution, a perfect power law fit (R2 is 0.988 and alpha is 2.06) can be 
visibly presented by considering the cities with more urban parcels than the average level. Thus, the 
significant rank-size pattern with high R-square values indicate the applicability of our models for all 
cities.   
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(a) 

 
(b) 

 
Figure 8 Power law distributions a) in term of the parcel numbers for all 654 cities; b) in terms of 

parcel size for typical cities 
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On the other hand, the power law fit is also adopted in analyzing the ranks of urban parcels’ size in 
typical cities at various governmental levels for understanding the applicability of proposed 
approach in each kind of cities internally. Generally, the power law fits for all parcels can explained 
around 70% of urban areas. Better regressions are implied in the cities occupied higher 
administrative levels rather than ones in the cities at lower levels. More specifically, the alpha value 
in Beijing, Nanjing and Changsha are all above 1.37 and the adjust R2 is greater than 0.77, whereas 
the Weifang and Gongzhuling have the alpha value of 1.28 and a smaller R2 which is about 0.65. 
While removing the parcels less than the mean size, better power law fits can be easily recognized 
(all R2 increased above 0.9). All these shared similar trends emerged in typical examples suggest that 
our models can be applied in modeling the urban parcels within different kinds of cities.  
 

4.3 Urban areas of all Chinese cities 
 
By merging all the selected urban parcels, urban areas of all Chinese cities are automatically 
illustrated. For gaining more insights to these results, the typical cities (e.g. Beijing for MD, Nanjing 
for SPC, Changsha for OPCC, Weifang for PLC and Gongzhuling for CLC) on different administrative 
levels are listed and compared with the results from other datasets including DMSP/OLS, census-
based population density and road intersections (Table 2). 
 
Compared with the results from other datasets, the urban area generated through our approach has 
generally higher resolution than other databases (Table 2). The outputs captured by using the other 
three datasets are highly correlated to the ones detected in our projected framework in relatively 
developed cities in terms of initial eyes judgment. This may be mainly on the basis of good digital 
infrastructures and small censuses setting for survey. This assumption can be verified through 
comparison among the results of developing cities. Precisely, our approach seems to be more 
possible to produce detailed results than the other two. From a more precise point of view, the 
generated urban area was further overlapped with other results to detect the overlapping rates. 
More details can be found in model validation (Section 5.1).  
 

Table 2 The profile of urban areas for typical cities 
 

City 1 Beijing 2 Nanjing 3 Changsha 4 Weifang 5 Gongzhuling 

Urban 
parcels 

     

Urban areas 
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City 1 Beijing 2 Nanjing 3 Changsha 4 Weifang 5 Gongzhuling 

DMSP/OLS 

     

GLOBCOVER 

     

Population 
density 

     

Road 
intersections 

     

 

5 DISCUSSION 
 

5.1 Model validation 
 
Model validation is conducted via comparing with urban areas by our approach with four datasets 
for all 654 Chinese cities: (1) the urban areas  defined in the 300m resolution in GLOBCOVER 
(Bontemps, 2009); (2) the urban areas presented in the 1km resolution retrieved from DMSP/OLS in 
2008 (Yang et al, 2013); (3) the urban areas represented by sub-districts with population DENSITY 
greater than the mean density (977 people per km2) of all 39,007 sub-districts of China in 2010 by 
using Jiang (2013)’s head-tail division rule and the 2010 population census of China (Wu et al, 2014); 
(4) the urban areas presented by road INTERSECTION density using the ordnance survey applied in 
this study. Urban areas are selected in each city by sorting all grids’ estimated kernel density of road 
intersections while considering observed total area of a city (elaborated in Section 2.2).  
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All the results are shown in Table 3 for detail representation. In terms of the captured size of urban 
blocks, the urban parcels in this study (average size is about 300m * 400m) is far smaller than the 
ones reported in other four datasets, reflecting a fact that better scaled outputs are achieved 
through our approach. (1) From the perspective of overlapping rate, there are 65.5% of detected 
common urban areas (totally 30,606 km2) in our outputs intersected with DMSP/OLS. With 
consideration of time mismatch between these two dataset, our suggested approach can be 
reasonably imagined to produce good results for all the Chinese cities depending on the evaluation 
above. (2) The results between proposed data GLOBCOVER are not as good as expected initially. 
There are only 20,801 km2 urban areas occupied about 44.5% in our result that are intersected with 
GLOBCOVER. These might be the results of non-correspondence between these two datasets 
regarding with time and resolution. (3) There are 81.9% of urban areas by our method fall into the 
urban areas represented by population density, indicating that most of our results are associated 
with high population density. The overlapped ratio over 80% is partially due to the overestimated 
urban areas in DENSITY, which is nearly three times of that stated by MOHURD (2013). (4) The 
comparison results between ours and by using road intersections are acceptable (76.8%), which 
could be attributed to the same data source used in both methods.  
 

Table 3 The comparison of urban areas in various datasets for 654 cities in China 
 

Data Year 
Spatial 

resolution 
Urban area 

(km2) 
# patches 

Average patch 
size (ha) 

Intersected with 
ORDNANCE (km2) 

ORDNANCE 2012 269 m 46,713 18,404 312.5 N/A 

DMSP/OLS 2008 300 m 45,834 1,345 3,407.7 30,606 (65.5%) 

GLOBCOVER 2009 1 km 39,789 12,701 313.3 20,801 (44.5%) 

DENSITY 2010 6.7 km 126,860 728 17,425.8 38,245 (81.9%) 

INTERSECTION 2012 500 m 46,703 4221 1,106.5 35,868 (76.8%) 
 
Note: All datasets are clipped using the administrative boundaries of 654 cities in China. ORDNANCE stands for 
the urban areas by this study. Spatial resolution of ORDNANCE is for the average parcel size of all urban parcels 
(supposed to be square). Spatial resolution of DENSITY is for the average sub-district size among all urban sub-
districts in China (supposed to be square). 

 
Admittedly, there is a blank among all existing methods to produce an authoritative urban area. In 
other words, it is hard to determine which result could most accurate since that each method could 
reflect one kind of possible understanding of the same question. However, the overall precisions are 
acceptable taking the differences between various models into account. 
 

5.2 Horizontal evaluation on methods for delineating urban areas 
 
In addition to quantitatively comparing our results with methods, there are six dimensions are 
considered for qualitatively evaluating the strengths of existing methods including practicality, 
geographical scale, result resolution, data availability, methodological convenience and dynamics 
(Figure 9). 10 professionals in different planning institutes in China were interviewed and asked to 
rate the performance of every approach according to their working experience. The practicality here 
refers to the value that can directly benefit current urban planning. Due to the similarly basic spatial 
units setting, our urban parcels-based results are generally considered as the most straightforward 
method to reflect real developments in urban parcels. In the meantime, conventional approaches 
e.g. DMSP/OLS, survey parcel map and population density maps are also labeled as the practical 
tools to understand urban extent. Moreover, the proposed approach in this study is expected to 
better balance the dilemma between the coved scale and result resolution in traditional models 
(Long, 2014). Relying on the open datasets in the background of development of volunteered 
geographic dataset, this method projected in this paper is also well-thought-out to be a public 
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accessible and temporally updatable data for urban planning and studies. Regarding with the 
methodological convenience, spatial survey and statistics based methods are straightly 
understandable, whereas our approach is understood as direct way of packaging complex 
simulations in an automatic manner. Frankly, all these evaluations are generally based on the reality 
of urban planning in developing countries, particularly in China, which means that the assessment 
addressing the same issue would be different in those developed nations where urban survey and 
statistics are conducted maturely for many years. However, it is still very worth to promote our 
produced method in web 2.0. It is a big model (Long, 2014) in a direct, fine-scaled and dynamic sense 
based on omnipresent open data thereby benefiting the understanding of urban area towards city 
management and planning.  
 

 
 

Figure 9 Comparison between existing methods of delineating urban areas 
 

5.3 Potential bias and further steps 
 
This study proposes an automatic framework to generate urban area and provides examples of all 
Chinese cities. The increasingly available volunteer geographic information in this framework also 
promotes the merits of this approach. Nevertheless, several limitations still exist in the current study, 
which would be highlighted in our future research. First, current methodology could be directly 
improved based on the increase of open data availability. The location based online information (e.g. 
check-ins) could be considered to infer the weights of POIs thereby reflecting the actual urban usage 
more accurately. Second, more samples of cities should be used for model calibration to enhance 
precision of our approach, even if our methods have already proven the applicability and flexibility 
of applying local constraints rather than the global ones for all cities. Last, the presently applied city-
level urban area statistics could be replaced by fined scaled ones, e.g. districts or even sub-districts, 
aiming for controlling the total area of urban parcels in a more detailed manner.  
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6 CONCLUDING REMARKS 
 
In this paper, a vector cellular automata model is proposed based on road network in ordnance 
survey and points of interest for explicitly delineating parcel-based urban areas. Urban areas in all 
654 cities are generated by using our approach. The whole progress contains several components 
including parcels generation, urban parcels selection, and urban area production. In the first step, 
road network layer in ordnance survey is applied to define parcels by removing the buffered roads 
from the study area. In the following stage, all the parcels are equipped with their attributes like size, 
compactness, accessibility, and POIs density. And then, the vector cellular automata model is 
adopted for identifying urban parcels from all generated parcels, taking into account spatial 
variables of each parcel as well as conveyed total area in each city. At last, the urban areas of each 
city are mapped by aggregating urban parcels. In the process of self-validation, the power law fits 
are detected when analyzing the relationships between generated amounts of urban parcels and 
their ranks across cities and the correlations between parcels’ size and the frequency distributions in 
five typical cities, proving the applicability of our approach. The final results are also validated 
through comparing them with urban areas presented by DMSP/OLS, GLOBCOVER, population 
density and road intersection density maps. Furthermore, after interviewing relevant urban planners, 
the proposed approach in this paper is given high ranking on various dimensions. In sum, our model 
is proven to be not only effective in modeling urban area through incorporating spatial and 
functional features of urban parcels but also more straight-forward, time-saving and fine-scaled, 
compared with other existing ones. 
 
As an alternative approach to capturing urban areas for all the Chinese cities partially based on open 
data, the presented method is expected to have contributions on several aspects. At the outset, our 
study for delineating urban areas of all Chinese cities from a national perspective in a fine-scaled 
manner would fill a gap in existing literature. At the same time, the produced approach could 
promote urban studies of urban areas based on open dataset and enhance the relevant studies in 
web 2.0. Furthermore, this method could be regarded as a useful presentation and even solution for 
the cities in developing countries, particularly the small cities limited by the digital infrastructures. 
Finally, due to well-consideration of omnipresent spatial and functional factors, the introduced 
method could reclaim the need for consistency, efficiency and availability in defining city urban 
areas across cities. 
 
The projected framework has potentials to benefit relevant urban studies and policy distributions. 
First, through this study, the current situation of urban development can be reflected at a standard 
level, thus feeding both intra-city and inner-city academic studies. It would be more helpful for 
relatively small cities where digital infrastructures are poor and fine-level statistics are hardly 
secured. On the other hand, it can significantly save the cost for collecting data temporally without 
too much investment. This could be approached on our releasing the urban areas delineated on 
acceptance of this manuscript. Second, urban area simulation process could promote a deeper 
understanding of the ‘parcel-up’ urbanism that reflects the phase of a large site divided and sold off 
for development. Third, this model can be further developed to an advanced one to simulate the 
urban expansion. It might directly benefit urban planning prediction and evaluate the effectiveness 
of strategies and policies. Fourth, our model can methodologically helpful in unifying the calibers of 
defining urban areas amongst diverse cities based on ubiquitous data and reclaiming the need for 
consistency, efficiency and availability in defining urban areas with well-consideration of 
omnipresent spatial and functional factors across cities. 
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