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Abstract. The traffic networks reflect the pulse and structure of a city
and shows some dynamic characteristic. Previous research in mining
structure from networks mostly focus on static networks and fail to ex-
ploit the temporal patterns. In this paper, we aim to solve the problem
of discovering the urban spatio-temporal structure from time-evolving
traffic networks. We model the time-evolving traffic networks into a 3-
order tensor, each element of which indicates the volume of traffic from
i-th origin area to j-th destination area in k-th time domain. Considering
traffic data and urban contextual knowledge together, we propose a regu-
larized Non-negative Tucker Decomposition (rNTD) method, which dis-
covers the spatial clusters, temporal patterns and relations among them
simultaneously. Abundant experiments are conducted in a large dataset
collected from Beijing. Results show that our method outperforms the
baseline method.

Keywords: urban computing, time-series data mining, knowledge dis-
covery

1 Introduction

Understanding the urban structure is important for urban planning, transporta-
tion management, epidemic prevention, and location based business. However,
our knowledge in this area is limited. Nowadays, the rapid growth of informa-
tion infrastructure collect huge volumes of trajectory data, such as GPS trajec-
tories, mobiles and IC card records, from which we can build a “from-where-
to-where” traffic network that indicates the volume of traffic from one origin
area to another destination area. The traffic networks give us a great chance to
study the detail of urban structures [2]. In this paper, we consider the problem
of discovering urban spatio-temporal structure from time-evolving traffic net-
works. The goal is to discover spatial clusters of urban areas, temporal patterns
of urban traffic and their correlations simultaneously, which we refer to urban
spatio-temporal structure.

Significant progresses have been made on the problem about finding inter-
esting structures from networks in the field of community detection [1]. For ex-
ample, researchers have found protein clusters that have same specific function
within the cell from protein-protein interaction networks [3]. Social circles can
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be mined from social networks [7]. The basic intuition shared by this methods
is a find community that have more edges “inside”the community than edges
“outside”. However, in urban situation, challenges arise because the traffic net-
work is different from network in previous research. First, the traffic network is
time-evolving and dynamic. Traffic in the morning is apparently different from
that in the evening. Second, the structure is also related with urban contextual
information. A working area owns different structure from a residential area.
Then, the structure we want to find need to consider not only edge information,
but also the time and urban contexture attribution.
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Fig. 1. Framework of rNTD

To solve these challenges, in this paper we model the time-evolving traffic
networks into a 3-order origin-destination-time tensor [10], each element (i, j, k)
of which represents the volume of traffic from the i-th origin area to the j-th
destination area in the k-th time domain. Considering traffic data and urban
contextual information together, we propose a regularized Non-negative Tucker
Decomposition (rNTD) method to solve the problem, which decomposes the
original tensor to three projection matrix and a core tensor. The projection ma-
trix in origin and destination mode indicate which cluster an area belongs to.
The projection matrix in time mode shows temporal patterns. And the core
tensor gives the correlation between spatial clusters and temporal patterns. The
framework of rNTD is shown in Fig. 1. We apply Alternating Proximal Gra-
dient to optimize the rNTD problem, and carry out intensive experiments to
demonstrate the effectiveness of our proposed method.

It’s worthwhile to highlight the key contribution of this paper.

— We formulate the urban spatio-temporal structure discovery problem for-
mally with TfNTD, and devise an efficient proximal gradient method to solve
it.

— The discovered urban spatio-temporal structure is easy to understand and
well explained, which can support to solve some urban problem, such as
urban planning, traffic jam and so on.

— We conducted intensive experiments on a real dataset collected from Bei-
jing, and the results show that the rNTD can achieve a better performance
compared with other competitors.
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The rest of the paper is organized as follow: Section 2 summarizes related
work. Section 3 gives the formulation of our problem and the method we propose.
We give experimental results in Section 4 and conclude in Section 5.

2 Related Work

The research of urban computing have recently received much attention. Yuan et
al. [14] discover regions of different functions in a city using human mobility data
and POL. Zheng et al. [17] design an algorithm to detect flawed urban planning
with GPS trajectories of taxicabs traveling in urban areas. Zhang et al. [15]
propose an context-aware collaborative filtering method to sense the pulse of
urban refueling behavior. Zheng et al. [16] give a novel method to infer the real-
time air quality information throughout a city. Different from these study, we
explore urban spatio-temporal structure from time-evolving traffic networks.

A great deal of work has been devoted to mining community structure from
network [1]. Recently, Wang et al. [11] use Non-negative Matrix Factorization
to discover community from undirected, directed and compound networks. Yang
et al. [13] develop CESNA for detecting communities in networks with node
attribution. Kim et al. [4] propose a nonparametric multi-group membership
model for dynamic networks. Different from the above mentioned work, we mine
time-evolving traffic networks by considering node attribution (urban contextual
information) and temporal dynamic (time-evolving) together.

3 Regularized Non-negative Tucker Decomposition

3.1 Problem Formulation

In this section, we will introduce details of our model. First, we formally define
the problem of urban spatio-temporal structure discovery. Suppose we have M
areas in city with é-th origin area denoted as o0; and j-th destination area denoted
as d;. We split the day time uniformly to K time domain with k-th domain
denoted as tg.

We denote the time-evolving traffic networks data as a 3-order tensor X e
RMXMXN "with its (i, j, k)-th entry X;;;, represents the volume of traffic from i-
th origin area to j-th destination area in k-th time domain. Since the distribution
of the value in tensor X is severely skewed, to reduce the impact of high value,
we use the log function for scaling the tensor data:

Xiji = loga (1 + Xijk) (1)

Then given the time-evolving traffic networks, the spatial and temporal struc-
ture discovery problem is converted to finding latent projection matrix in every
mode and the correlation core tensor between them simultaneously from the
traffic tensor. The projections of mode O and D summarize the spatial clusters
on urban areas, and projections on T show the temporal patterns, and correla-
tion between O, D and T give the a compact view of urban traffic. As show in
Fig. 1. From the result, we can get the urban spatio-temporal structure.
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3.2 Basic Tucker Decomposition

Let O € RMX™ he the latent origin projection matrix, D € RM*™ be the latent
destination projection matrix, and T € RV*™ be the latent time projection ma-
trix. Let C € R™*™*"™ he the latent core tensor. We have O = {01, 03, ...,0, },
D = {dy,ds,....,d,}, and T = {t1,to,...,t,}, where every column vector in
projection matrix present the weight of every factor for each area or time ac-
cordingly and C;j;, represents the correlation between latent factor o;, d;, and
t.

According to the Tucker Decomposition[5], we can factorize the tensor ap-
proximately based on the factor matrix and core tensor as

X=Cx,0x4Dx;T (2)

where X, represents the tensor-matrix multiplication on mode n.

Then, given the observed origin-destination-time tensor X', the objective of
this paper is to find the optimal latent projection matrix O, D, T and core
tensor C by minimizing the following objectives

Ji =X —-Cx,0x4D x; T||% (3)

The objective function can be seen as the quality of approximation of tensor
X by the projection matrix O, D, T and core tensor C. However, as mentioned
above, urban structure is also strongly related with urban contextual informa-
tion, and the sparsity of X makes it very challenging to directly learn the struc-
ture from only observed urban traffic network. That’s the reason why we need
to make full use of the urban contextual information.

3.3 Urban Contextual Regularization

A point of interest(POI), is a specific point location that someone may find useful
or interesting. A POI is associated with a geo-position (latitude, longitude) and
a POI category, which implies the urban contextual information . Table 1 shows
the information of POI category used in this paper. For each area, the number
of POI in each POI category can be counted. Then the POI feature vector in
area i can be denoted by v; = (1, ¢a,...,cp), where the P is the number of POI
categories, and ¢, is the number of k-th category POI. Based on the POI feature
vectors, we consider the consin distance of POI vectors to measure similarity of

two areas.
i ()

[[oill - llvsll
In this way, we can construct the area-area similarity matrix W € RM*M We
further assume that W can be approximated by the inner product of the latent

origin projection matrix and latent destination projection matrix respectively,
thus we need to minimize the following objective

Wy =

J2 = ||[W - 00T||% ()
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Table 1. Information of POI category

id ‘ POI category ‘ id ‘ POI category

1 |food & beverage Service| 8 | education and culture
2 hotel 9 business building

3 scenic spot 10 residence

4 finance & insurance 11 living service

5 corporate business 12 |sports & entertainments
6 shopping service 13 medical care

7 | transportation facilities | 14 | government agencies

Js=|W - DD} (6)

We also use non-negativity constraints and sparsity regularizer on the core
tensor and/or factor matrices. Non-negativity allows only additivity, so the solu-
tions are often intuitive to understand and explain[6]. Promoting the sparsity of
the core tensor aims at improving the interpretability of the solutions. Roughly
speaking, the core tensor interacts with all the projection matrices, and a sim-
ple one is often preferred. Forcing the core tensor to be sparse can often keep
strong interactions between the projection matrices and remove the weak ones.
Sparse projection matrices make the decomposed parts more meaningful and
can enhance uniqueness, as explained in [8].

Finally, by combining J1, J2, J3, together, we can get the latent factor
matrix O, D, T and latent core tensor C by minimizing the following objective
function.

T =|lX —Cx,0xqD x; T|%+a|W—-00T|%

+B||W — DD [|% +4[[C||1 + 6]|O||1 + €| D]|1 + | T (7
st. C>0,0>0,D>0,T>0

3.4 Optimization

In this section, we will introduce a Alternating Proximal Gradient(APG)[12]
method to solve the optimization problem.

For convenience of description, We first introduce the basic APG method to
solve the problem

S
leinF(Xla"'7Xs):f(xla"'aXS)+Zri(Xi) (8)
i=1
where variable x is partitioned into s blocks x1,- -+ ,Xs, f is a differentiable and

for each i, it is a convex function of x; while all the other blocks are fixed. Each
r; (x;) is the regularization item on x;.
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Then at the k-th iteration of APG, x1,--- ,x, are updated alternatively from
1 =1%o s by
k k k—1 L§ k—112
x; = argmin <gi X — X, > + é”xi —x; |5+ 7 (x3) (9)

X

where gF = V fF Xfil) is the block-patial gradient of f at x,lf717 L; is a Lipschitz
constant of V f; (x;), namely,

IV fi(xi,) = Vi (xi)llF < Lillxi;, — %i, |7, Vi, , X4, (10)

In this paper, we consider the non-negative and sparse regularization. Then
the Equation 9 has closed form

1
L

xf = max (O,xf‘1
7

V) - ) ()

Then we return to our problem. Although the objective function is not jointly
convex with respect to C, O, D, and T, it is convex with each of them with the
other three fixed. We can adopt a block coordinate descent scheme to solve the
problem. That is, starting from some random initialization on C, O, D, and T,
we solve each of them alternatively with the other three fixed, and proceed step
by step until convergence. Specifically, the gradients of the objective J with
respect to the variables are

‘3% =2 (€%, (070) x4 (DTD) x, (TTT) = X x, 07 x, D », T")

oJ

56 =2 (0(€ x4 (D™D) x, (TTT)), €F) = (X x4 DT 5, TT) , €[,
~a(W-00")0)

oJ

o5 =2 (D (€%, (070) x; (TTT)) , €y — (X %, 07, T7) , Clyy
~3(W-DD")D)

97 _, (T(cx,(070) x4 (D™D)) , €,y = (X %, 07 xa D7), C[)

oT ° ¢ ORdU) o IR0

(12)

where X ;) denotes the mode-k matricization of tensor X.

4 Experiment

4.1 Data sets

In this section, we conduct extensive experiments to evaluate the effectiveness
and show insight of our proposed method based on a real taxi trajectory dataset,
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which contains more than 3 millions occupied trips generated by taxis of Bei-
jing in one month (November, 2011). According to the report of Beijing Trans-
portation Bureau, the taxi trips occupy over 12 percent of traffic flows on road
surface[14]. We split the Beijing map within 5-th Ring Road into 651 areas ac-
cording to the traffic analysis zone as shown in Fig. 2(a), which is the most
commonly used unit of geography. We also split 24 time domains according to
hours. After the data preprocessing, we built a (651 x 651 x 24) traffic tensor.
Statistics about tensor data distribution shown in Fig. 2(b) reflects severe skew-
ness. Our datasets also include a POI dataset in year 2011, which contains more
than 30 thousands POI records.
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Fig. 2. Description of datasets

4.2 Comparative Method

Besides the proposed rNTD method, we also implement the following methods
for comparison.

— Basic Non-negative Tensor Factorization (bNTF): As a extension to
non-negative matrix factorization, this method suppose a joint latent space
for each mode by solving the objective function:

. _ 2
Il -2 oo ol "

where ©® represents the vector outer product. This method can be also seen
as the special case of NTD when the core tensor is super diagonal, also known
as PARAFAC.

— Regularized Non-negative Tensor Factorization (rNTF): By incorpo-
rating the urban contextual regularization, this method consider the follow-
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ing objective function

. _ 2 _ T2 _ T2
Juin 1% ZT:o,.Qd,.QtTH +a|W —00 "z +B|W —-DD" |} (14)

— Basic Non-negative Tucker Decomposition (bNTD): This is a variant
of our method, but with no consideration about regularization terms by
solving:

in_[|X —Cx,0 x¢D x; T3 15

Lmin X = Cx, 04D x, T} (15)

We evaluate the quality of patterns we discover by tensor reconstructed error
using the Root Mean Square Error(RMSE)

nen Xijk — Xij
RMSE = \/ ke I’Hj\k " (16)

where H is the set of hidden elements in our experiment and |H| is its size, X
is the reconstructed tensor.

4.3 Parameter Settings

In this section, we report the sensitivity of parameters our method involves,
the dimensionality of hidden space m,n, and the tradeoff parameter for urban
contextual regularization a;, [.

Dimensionality of Hidden Space The goal of our model is to find a m xmxn-
dimensional space for origin areas, destination areas and time. How to set m and
n is important for our problem. If m, n are too small, the cluster can not be well
represented and discriminated in the latent space. If m,n are too large, the low-
rank structure would not capture the relations between different dimensions and
the computational complexity will be greatly increased. Thus, we conduct 10
experiments with m ranging from 5 to 30 and n ranging from 2 to 10 on the
dataset. The result are shown in Fig. 3, from which we can see that with the
increase on the dimension m, n, RM S E will reduce gradually. When m > 20,n >
3, the RMSFE reduces rather slow. For the concern of the tradeoff between
precision and explainaration, we choose m = 20 and n = 3 as latent space
dimension in our experiments.

Tradeoff Parameters The tradeoff parameters o, 8 in our method play the
role of adjusting the strength of different terms in the objective function. Fig.
4 shows the RMSE when o, 3 changes from 107 to 1. When «, 3 are small,
the performance is close to that of bNTD, as we will see in Table 2. However,
when «, § are relatively large, the optimization in Equation 7 my be dominated
by the urban contextual regularization term, therefore the reconstructed loss
term is not properly optimized. The result in Fig. 4 show that the parameter
set @« = 8 = 0.01 produce the best performance. In our following, we just use
this parameter setting. Moreover, we also find the best configurations in every
comparative methods on our datasets to make sure comparisons are fair.
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Fig. 4. Varing the city context regularization coefficient «, 3

4.4 Experimental Performance

To do the comparision, We randomly select 50% 70% and 90% of the observed
entries in tensor as training dataset and compute the reconstruction error of
the hidden entries, where we obtain the RM SE. We repeat the experiments 10
times and report the average performance of all methods in Table 2,

From the Table 2, we can observed that:

Table 2. Experiment performance

[ BNTF [ NTF [ bNTD [ :NTD
50% || 0.3974 0.3952 0.3366 0.3359
70% || 0.3970 0.3950 0.3361 0.3352
90% || 0.3963 0.3943 0.3354 0.3347

— The comparison between bNTF v.s. bNTD and rNTF v.s. INTD reveals the
advantage of the tensor Tucker decomposition as a method to capture rela-
tion from high dimensions data and get stable and compact representation.

— The advantage of INTD over bNTD, as well as the advantage of rNTF over
bNTF, shows shows the importance of urban contextual in our problem.
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— Finally, our proposed method, rNTD, which incorporates the spatio-temporal
interaction data and urban contextual information together, achieves the
best performance in all experimental trials.

(a) Clusters of origin areas (b) Clusters of destination areas
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(c) Three temporal patterns

Fig. 5. Spatial clusters of Beijing areas and temporal patterns of Beijing traffic

4.5 Insights

In this section, we will give the empirical study to show the insights that founded
by our method. As shown in Fig. 1, the goal of urban spatio-temporal structure
discovery is to find a low-rank tensor, from which we can not only identify cluster
behaviors on the origin, destination, time modes, but can also detect the cross-
mode association.

The projection on O and/or D gives the spatial correlation information
among the areas in city. The entries with high values in a columns of O and/or D
imply which cluster an area belongs to. The result is visualized in Fig. 6(a) and
Fig. 6(b). Surprisingly, we see that although our method make no use of geog-
raphy information, spatial cluster are geographically close. In Fig. 6(c), we plot
the three columns of projection matrix T. Along the time mode, three temporal
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(a) Temporal pattern 1 (b) Temporal pattern 2 (c) Temporal pattern 3

Fig. 6. Visualization of core tensor: within the black line is the a destination cluster
for case study, which is Central Business District (CBD) of Beijing. Three subfigures
represent three temporal patterns respectively. Each subfigure gives the origin cluster
that have correlations with CBD. Values are from the core tensor.

patterns are found. This result is similar with the work in [9], where three pat-
terns are explained as home to workspace, workspace to workspace, workspace
to others. Although the patterns are similar, our method can find also the cor-
responding spatial patterns and the correlation between them, thus the better
understanding of spatio-temporal structure of city.

We choose the Central Business District (CBD) of Beijing as a destination
cluster for case study, which is shown within the black line in Fig. 6. We visualize
the origin cluster that have non-zero value with CBD destination cluster in core
tensor in three temporal patterns accordingly. From Fig. 6(a), we see that most
traffic to CBD, as a typical workplace, reach peak in the morning and fade down
soon. In the daytime, most traffic occur in the nearby area. Since CBD is one
of the most congested place in Beijing, Fig. 6 give an intuitional guidance for
urban planning to solve traffic jam.

5 Conclusion and Future Work

In this paper we investigate the problem of discovering urban spatio-temporal
structure from time-evolving traffic network. We model the time-evolving traffic
network into a 3-order origin-destination-time tensor. We propose a regular-
ized Non-negative Tucker Decomposition (rNTD) method to solve this problem,
which consider traffic data and urban contextual knowledge together. We also
propose an alternating proximal gradient algorithm for optimization. Experi-
mental results on a real-world dataset show that our method can significantly
outperform the baseline methods.There are many potential directions of this
work. It would be interesting to investigate how the POI affect urban traffic,
which will give more guideline for urban planning.
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