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Abstract: The emergence of big data brings new opportunities for us to understand our socio-economic 

environments. We coin the term “social sensing” for such individual-level big geospatial data and the 

associated analysis methods. The word “sensing” suggests two natures of the data. First, they can be viewed 

the analogue and complement of remote sensing, since big data well capture socio-economic features for 

which the conventional remote sensing data do not work well. Second, in social sensing data, each individual 

plays the role of a sensor. This article connects social sensing with remote sensing and points out the major 

issues when applying social sensing data and associated analytics. We also suggest that social sensing data 

contain rich information about spatial interactions and place semantics, which go beyond the scope of 

traditional remote sensing data. In the coming big data era, GIScientists should investigate theories in using 

social sensing data, such as data representativeness and quality, and develop new tools to deal with social 

sensing data. 
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Introduction 

The last five decades have witnessed the fast development of remote sensing techniques, of which a major 

objective is to reveal the physical characteristics of the Earth’s surface, such as land cover features. 

Conventional land cover classification methods take spectral and textual properties as the major evidence 

(Gong and Howarth 1990). However, uncovering land uses from only remotely sensed imagery is rather 

difficult, since socio-economic features are not directly related to the spectral reflectance that can be detected 

by various sensors (Wu et al. 2009). Much literature introduces auxiliary information and domain knowledge 

for inferring land use (or social function) schemes (Liu, Guo, and Kelly 2008; Platt and Rapoza 2008; Wu et al. 

2009; Meng et al. 2012; Hu and Wang 2013). However, these methods do not always yield ideal results. 

Although remote sensing data can to a certain extent capture urban/suburban landscape and infrastructure 

(such as buildings and street network) (Jensen and Cowen 1999), remote sensors have limited capability to 

extract socio-economic attributes and human dynamics such as movements and daily activities. 

Recently, with the rapid development of information and communications technology (ICT), the impacts of 

ubiquitous big data on geography have been widely recognized (Graham and Shelton 2013), although there is 

not a clear and widely-accepted definition of big geospatial data (Batty 2013b). Several types of geospatial big 

data are available to capture the spatio-temporal patterns of human activities and thus provide an alternative 

approach to uncovering land uses and exploring how cities function in a fine temporal resolution. Such big 



 

 

data include taxi trajectories, mobile phone records, social media or social networking data
1
, smart card 

records in public transportation systems, and so on (Lu and Liu 2012). Much research has been conducted to 

obtain land use characteristics using mobile phone data (Ratti et al. 2006, Toole et al. 2012, Pei et al. 

forthcoming), taxi data (Qi et al. 2011; Liu et al. 2012b), and smart card data (Gong et al. 2012). The primary 

assertion of such studies is that different land uses are associated with different temporal rhythms of activities 

(Sevtsuk and Ratti 2010).  

Considering that remote sensing data have been widely and successfully used to map physical features of our 

world, in this article, we introduce the term “social sensing” for the abovementioned geospatial big data, since 

such data have some features in common with the conventional remote sensing data and reveal socio-economic 

characteristics as a complement to remote sensing data. We use social sensing to emphasize that geospatial big 

data can be viewed as an analogue of remote sensing data in social science research. By adopting the methods 

developed in remote sensing applications, social sensing provides a promising approach to understanding our 

socio-economic environments, alone or integrated with remote sensing data. Additionally, social sensing data 

in general contain rich information, such as spatial interaction and place semantics, which go beyond the scope 

of traditional remote sensing data. This article summarizes the properties of social sensing data and puts 

forward a research agenda for applying them in geographical analyses. 

Social Sensing 

In this section, we introduce two data sets to demonstrate the concept of social sensing. One data set is 

composed of taxi trajectories and another is of social media check-in records, both of which were collected in 

Shanghai, China. The taxi trajectory data set covers 7 days in 2009 and includes pick-up points (PUPs) and 

drop-off points (DOPs) (a description of this data set can be found in Liu et al. 2012a, b). The check-in data 

contain about 100,000 check-in records collected over the course of one year. A check-in record is a 

spatio-temporally tagged text message posted by a user using a mobile device. From the data set, we can 

extract difference places such as workplaces, hotels, parks, and restaurants (see Wu et al. 2014 for details about 

this data set). The study area (Figure 1A) is rasterized into 28,000 (140 rows and 200 columns) 250*250 m
2
 

squares so that we can count the numbers of PUPs, POPs, and check-ins in each pixel.  

Figures 1B, 1C, and 1D depict the spatial distributions of the three activities, i.e., checking in, picking up, and 

dropping off. It is natural that the three distributions are positively correlated with the population distribution 

(Figure 1E, represented by the Landscan
TM

 data with a spatial resolution of 1km
2
). The frequency distributions 

of the three activities have a heavy-tail characteristic (Figure 1F).  

                                                        
1
 From their original meanings, social media and social networking are distinct. In general, social media services (e.g., Twitter) 

focus on sharing information but social networking services (e.g., Facebook) pay much attention to connecting with others. 

However, both of them provide similar functions such as posting contents with locational information and maintaining 

relationships between users. In this article, we simply use social media for these services.  



 

 

  

(A)                                                                              
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(C)                                                                               
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(E)                                                                             

(F) 

Figure 1. (A) Urban area of Shanghai; (B) Spatial distribution of check-in points in about one year; (C) Spatial 

distribution of pick-up points in seven days; (D) Spatial distribution of drop-off points in seven days; (E) 

Population density represented using Landscan data; (F) Frequency distributions of the three activities. Note 

that subfigures B, C, and D are obtained using logarithmic transformations. 

Much literature has paid attention to the temporal activity rhythms extracted from different data sources 
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(Sevtsuk and Ratti 2010; Liu et al. 2012b; Kang et al. 2012b; Toole et al. 2012; Shen et al. 2013; Pei et al. 

forthcoming). Since human activities have a clear daily periodicity, we can aggregate the actual data set 

covering a long period by computing the number of activities recorded for each hour of the day. Figure 2A 

depicts the averaged and normalized diurnal variations of the three activities across the entire study area. The 

check-in curve has two clear peaks, corresponding to 1pm and 7pm. It is natural that the check-in probability is 

high during non-working hours, especially when people have lunch or dinner. Although the curves 

representing pick-up, drop-off, and check-in behavior diverge during the day, the three curves exhibit a similar 

trend from 10pm to 9am of the next day. Note that the temporal resolution for computing activity frequencies 

has been set as 1 hour. A different temporal resolution, e.g. 0.5 hours, will yield different curves but the basic 

trend does not change much. Hence, in the following sections, we use 1 hour as the default time interval.  

Compared with the global temporal patterns, given a data source, we are more interested in local temporal 

patterns since different places (cf. the two triangles in Figure 1A) are associated with different temporal 

signatures (Figure 2B). Furthermore, these varying temporal signatures are themselves dependent on the 

underlying land use features.  Hence, a number of studies have focused on classifying land use features from 

taxi data (Liu et al. 2012b) and mobile phone data (Toole et al. 2012; Pei et al. forthcoming). The basic idea of 

such classification research is that the temporal curves, as shown in Figure 2B, can be viewed as the signatures 

of various land uses. This reminds us of the foundation of photometer remote sensing image classification, 

which generally extracts land cover information according to the electromagnetic spectral curves of different 

features such as forest, water, and barren land. Conventional remotely sensed data have been successfully 

applied in revealing physical geographical characteristics. On the contrary, current geospatial big data well 

capture human activities and are thus more sensitive to our socio-economic environments. We thus coin the 

term "social sensing" for various spatio-temporally tagged data sources and the associated analysis methods.  

  

(A)                                                                                    

(B) 

Figure 2. Normalized temporal variations of different activities extracted from taxi trajectories and social 

media check-in records. (A) Global patterns; (B) Local patterns associated with two places. 

Linking social sensing with remote sensing 

The temporal variations depicted in Figure 2 suggest that different places exhibit different responses to a 

certain activity. Meanwhile, given a place, the temporal variations of different activities captured by various 

social sensing data are also different.  Hence, for each social sensing data, by setting the spatial and temporal 

resolutions, we can obtain a series of images, which are similar to different bands of remote sensing imagery.  

In this sense, different social sensing data can be viewed as the analogues of different remote sensing data. We 

0 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

Drop off

Pick up

Check-in

24

Time

P

0 5 10 15 20

0.00

0.05

0.10

0.15

Check-in (B)

Check-in (A)

Pick-up (A)

Pick-up (B)

Drop-off (A)

Drop-off (B)

Time

P



 

 

compare social sensing data with remote sensing data in Table 1. It is clear that these two data sources share 

some common characteristics, such as containing multi-sensor, multi-resolution, multi-temporal information, 

but capture different aspects of a geographical environment.  

Table 1. Comparisons between remote sensing and social sensing  

 Remote Sensing Social sensing 

Data source Remote sensed data collected 

from various sensors, such as 

radiometer, radar, and LiDAR 

Spatio-temporally tagged data 

collected from different location aware 

devices, such as mobile phone, GPS 

Major objective Physical features of Earth surface Socio-economic features of Earth 

surface 

Processing method Correction and calibration, fusion, 

classification, etc. 

Geocoding and preprocessing, fusion, 

classification, etc. 

Signal for Classification Electromagnetic spectra Temporal variation of activities 

The similarities between remote sensing data and social sensing data suggest that we can introduce 

conventional image processing methods to analyze geospatial big data. For example, we can view the activity 

density maps as different bands of images and generate false color composite images. The two subfigures in 

Figure 3 correspond to 8:00am-9:00am and 8:00pm-9:00pm. The composition scheme is that check-ins, 

pick-ups, and drop-offs are represented by red, green, and blue channels respectively. From the false color 

images, the spatio-temporal characteristics of the three activities can be clearly identified. The region color in 

white is the core area of Shanghai, where the densities of the three activities are all high. For the two time 

intervals, the red dots in the suburban areas indicate that the activity density of check-ins is higher than the 

other two activities. In the first image, the green zones correspond to residential areas, where people leave 

home in morning. These zones are purple or blue in evening time, indicating that both check-in and drop-off 

activities are high. Such synthesized images tell much land use information besides the above-mentioned 

patterns. Hence, we can use supervised or unsupervised classifiers to extract land uses, which we suggest are 

more reliable than those obtained from remotely sensed data since the source data directly capture human 

activities. A number of studies have been conducted in this vein (Liu et al. 2012b; Toole et al. 2012, Pei et al. 

forthcoming), but most of these studies focus on single-source data and do not take into account the fusion of 

multi-source data. 

  

(A)                                                                   (B) 

Figure 3 False color composition of three social sensing data source during different times. (A)8:00am-9:00am, 



 

 

(B) 8:00pm-9:00pm. 

Figure 3 demonstrates the similarity between social sensing and remote sensing. It suggests that 

well-developed remote sensing techniques can be applied in processing social sensing data and these two data 

sources can be integrated to gain a complete picture of geographical environments. For the first aspect, in 

addition to aforementioned classification studies, other remote sensing methods such as calibration and 

enhancement, feature selection, data fusion, and image segmentation have the potential to apply to social 

sensing data. For example, principal component analysis (or the Karhunen-Loève transform) has been used for 

finding the major components, which depict different land use aspects of the study area (Reades et al. 2009; 

Sun et al. 2011). Besides directly providing methods, remote sensing is also a source to enlighten us to conduct 

similar studies. For example, numerous indices such as NDVI (normalized difference vegetation index) have 

been proposed. Accordingly, we can estimate happiness index (Mitchell et al. 2013) and demographical 

properties (Li, Goodchild, and Xu 2013) from social sensing data. Here we only list a few examples and 

believe that more analytical methods will be developed for social sensing data. 

Second, social sensing helps to solve the problem of “inferring land uses from land cover characteristics” in 

remote sensing applications. We can get land cover information according to the spectral characteristics from 

remote sensing data and human activities and movements from social sensing data. Information extracted from 

the two different data sources can validate each other to yield more precise results. With regard to integrating 

social sensing data with remote sensing data, the conventional approach for fusing remote sensing data and 

non-telemetric data is taking non-remote sensing data as a band of remote sensing image. Figure 4A is a false 

color composite image with the combination of ETM4, ETM3, and drop-offs from 8:00 to 9:00. The regions in 

red are covered by plants and the purple built-up areas are with high activity densities. It is interesting that the 

yellow zones are in general built-up areas with low activity densities denoted by drop-offs, and thus highlight 

certain regions with special functions, such as Hongqiao Airport and Expo Park.  When we analyze social 

sensing data, the spatial resolutions are generally ranging from tens of meters to hundreds of meters, which are 

relatively lower than high-spatial resolution remote sensing data. Hence, we can merge high-resolution 

panchromatic imagery with social sensing data to increase their spatial resolution. An illustration is visualized 

in Figure 4B. We get a new RGB image based on Figure 3A with the spatial resolution of 90m, and use color 

transformation method to fusing the Landsat 7 panchromatic image with the RGB imagery. From the fused 

imagery, we can clearly find some regions with high densities of check-ins and drop-offs, whose colors are 

mixture of red, blue and purple. They are generally big development zones, commercial areas, and public 

transportation facilities. 

  

(A)                                                                     

(B) 



 

 

Figure 4.  (A) False color composite imagery of 2010 ETM data of Landsat 7 and taxi drop-off data, where 

band 4, band 3, and drop-offs are represented by red, green, and blue channels, respectively. (B) Fused imagery 

by color transformation method: the low-resolution data is the RGB image composited of check-ins, pick-ups 

and drop-offs from 8:00 to 9:00 in the morning, and the high-resolution data is Landsat 7 panchromatic image. 

Issues in using social sensing data 

Conventional remote sensing data suffer from the limitation of capturing human factors when used in 

socio-economic applications. Such a limitation can be compensated for by integrating remote sensing data with 

social sensing data. However, a number of issues should be paid attention to when using social sensing data.  

First, to compute the temporal variations of activities, the study area should be discretized into regular or 

irregular units. Although some research based on mobile phone records directly deals with Voronoi polygons 

generated from base towers, many existing studies use regular rasterization with a coarse spatial resolution, for 

example 0.25km
2
 (Reades et al. 2009) and 1km

2
 (Sun et al. 2011; Liu et al. 2012b; Toole et al. 2012), to 

investigate land uses. The resolutions are much lower than those of widely-used remote sensing data. 

Unfortunately, increasing the spatial resolution will bring difficulties in analyzing social sensing data. As an 

extreme case, Figure 5A depicts a high spatial resolution RS image of Pudong Airport and vicinity in Shanghai, 

China. A 1km
2
 square is drawn using thick red lines, and the size of each small square is 250*250m

2
. It is 

natural that human activities should be linked with buildings, the size of which is close to 1km
2
. When using 

taxi data to measure activities in this area, however, both PUPs and DOPs concentrate in a relatively small area. 

If adopting a spatial resolution of 250m, a discontinuous result will be obtained. For pixels corresponding to 

the building, some contain high activity frequencies but others are blank. Figure 5B illustrates a fictitious 

urban environment, where four activities, including mobile phone calls, taxi pick-ups/drop-offs, bus 

pick-ups/drop-offs, and social media check-ins, exhibit greatly different distribution patterns. For example, 

both pick-ups and drop-offs can only occur in streets. Additionally, it is natural that bus pick-ups and drop-offs 

are more concentrated. On the contrary, mobile phone calls frequently occur within work places, and social 

media check-ins often occur at entertainment and dining establishments. In sum, the local spatial heterogeneity 

of different activities leads to sharp distribution gradients and makes the regularities unclear if a high spatial 

resolution is adopted. Hence, we should choose a coarser resolution to smoothen the activity distributions.  

 

(A) 



 

 

 

 (B) 

Figure 5. Spatial resolution issue of social sensing data. (A) A case of Pudong Airport, Shanghai. (B) Local 

spatial heterogeneity of activities captured by different social sensing data.  

Second, the spatial distributions of most activities extracted from social sensing data are positively correlated 

with population density (Liu et al. 2012a; Kang et al. 2012b). As shown in Figure 1F, the spatial distributions 

of human activity frequencies suggest that most activities are concentrated in a small area, which roughly 

corresponds to the downtown of Shanghai. Hence, the data in Figs 1B, 1C, 1D, 3A, 3B, and 3C are all obtained 

using a logarithmic transform for better visualization. In urban fringe areas or rural areas, however, the activity 

density is relatively low and thus leads to the problem of small numbers. In such areas, the temporal variations 

are rather random, and we cannot find a representative pattern after normalization. Figure 6A depicts the 

normalized temporal variations of check-ins inside two pixels in suburban areas (cf. points C and D in Figure 

1A). The two curves are quite different, so the two points are likely to be categorized into two land uses. 

However, when compared with pixels in urban areas, the absolute numbers of check-ins are very small, 

meaning that the two curves are flattened and it is difficult to find meaningful temporal patterns (Figure 6B). 

Figure 6 demonstrates that both the relative and absolute temporal patterns can be used to reveal the 

underlying land uses. Pei et al. (forthcoming) provide a good example of combining the two types of temporal 

variations. As a general rule, the total activity numbers reflect land use intensities and the temporal patterns 

depend on land use categories. Figure 6 also suggests that in rural areas, where human activity density is 

relatively low, social sensing data are not an effective measure of human activity. Last, considering such a 

spatial distribution, a varying resolution tessellation scheme may be more reasonable, although most existing 

studies have adopted regular rasterization. Future studies may adopt a fine resolution scheme in urban areas 

and a coarse one in suburban or rural areas.  
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(B) 

Figure 6. (A) Normalized temporal variations of check-ins inside two pixels in suburban areas. (B) Absolute 

temporal variations check-ins inside four pixels, two in urban areas and two in suburban areas. 

Third, social sensing data may also encounter temporal issues. Current land use classification research is 

founded on the idea that land parcels classified in the same use category exhibit similar diurnal patterns of 

activities. Additionally, given a place, it is assumed that the temporal curves in different days are also similar 

and exhibit high regularity. Hence, most studies compress the data spanning a long period into a 24-hour curve 

(cf. Figure 2). The assumption generally holds true. Slight differences, however, can still be found from day to 

day. Figure 7 plots the global temporal curves of Shanghai pick-ups and drop-offs in seven days. Some outliers 

exist although the periodicity is rather clear. For example, there are more taxi trips on Saturday and people 

begin their trips a bit late on Sunday. These two tendencies make sense given the common weekend habits of 

many people. On Thursday, the number of trips rapidly declines in the morning after 9:00am; while we have 

not found a reasonable explanation for this anomaly but suspect it may be caused by a special event. Outliers 

can be identified from global patterns, not to mention local patterns, which are less stable. The day-to-day 

changes in trip volume can be attributed to two aspects: special events and long-term dynamics. It is natural 

that in different seasons, the activity rhythms are different. Additionally, urban evolution, which includes 

sprawl and land use transition, also influences local temporal patterns. Averaging diurnal patterns can filter 

noise in the dataset but ultimately fails to capture these two dynamics. For many geographical applications, the 

latter aspect is more important: we need to decouple short-term variations and long-term variations in social 

sensing data. The data sets used in most current research cover a short period such as one month, and thus the 

problem is not serious. With the accumulation of various big data, we can reveal regional evolution in addition 

to land use distributions. 

 

Figure 7. Global temporal variations of pick-ups and drop-offs in seven days. Since the two curves of pick-ups 

and drop-offs are quite similar, we use negative drop-off volumes to differentiate them. 

Fourth, most existing temporal pattern studies are conducted based on the data collected in a single city such as 

Rome (Reades et al. 2009), Shanghai (Liu et al. 2012b), or Boston (Toole et al. 2012). Little attention has been 

paid to intercity comparisons. Can we set up a uniform temporal signature data base that stores the "standard" 

temporal curves associated with different land uses, just as we have done for remote sensing data processing? 

The answer is unfortunately negative. Given a city, the overall rhythm depends on its social, cultural, and 

economic features. The temporal signature of a particular activity is constrained by the overall rhythm. As 
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shown in Figure 8, the diurnal activity variations of various cities are not identical, although some common 

patterns can be found. For example, the curves of most cities have two clear “peaks”, which corresponding to 

12:00pm-1:00pm and 6:00pm-7:00pm. Such a pattern has also been reported by Cheng et al. (2011). Given a 

land use category, the difference between two cities may be more significant than those between different land 

uses inside one city. This makes it difficult to extract universal classification role across cities. For this reason, 

unsupervised classification methods are widely preferred over supervised classifiers for social sensing data. 

Another difficulty for supervised classification is that delineating training areas from activity distribution maps 

such as Figures 1 and 2 is difficult due to the lack of “standard” temporal signatures. The differences between 

cities’ temporal signature suggest that we should rely upon spatial distributions of activities instead of temporal 

variations when the study area is expanded to a region containing multiple cities. A recent good study was 

reported by Li, Goodchild, and Xu (2013). They introduced Twitter and Flickr data to investigate 

socioeconomic features in California. 

 

Figure 8. Diurnal variations of check-in activities in 11 top cities in China. The nine cities in mainland China 

exhibit similar patterns. Slight differences can still be found. For example, the evening check-in probability in 

Shanghai is high, indicating more night life activities. In Hangzhou and Suzhou, there are maximum check-ins 

activities during noon time. It is interesting and reasonable that the diurnal variations Hong Kong and Taipei 

are similar but different from those of mainland cities. 

Fifth, people’s actual activities cannot directly be acquired from most kinds of social sensing data. The need to 

participate in activities generates travel demands (Axhausen and Gärling 1992; Kitamura 1988), and thus 

detailed activity information is very important in studying human travel behaviors, traffic engineering, and 

urban planning. The observed activities obtained from social sensing data are “proxy activities” such as 

checking in on social media websites, making phone calls, or boarding a taxi. Thus, compared to conventional 

travel survey data, social sensing data contain much less information about people’s actual activity types such 

as entertainment. The observed spatio-temporal patterns are composed of patterns of different actual activities, 

such as in-home activities, work-related activities, and entertainment. Clearly, different activities exhibit 

different patterns (Wu et al. 2014). Decomposing existing social sensing data into actual activities can 

significantly improve our understanding of human mobility and consequently the underlying socio-economic 

environments. Although previous studies have devised methods to infer individuals’ actual activities from 

trajectories based on POI data (Alvares et al. 2007; Huang, Li, and Yue 2010; Phithakkitnukoon et al. 2010; 

Zhang, Li, and Pan 2012; Furletti et al. 2013; Schaller, Harvey, and Elsweiler 2014), uncertainty problems 

exist and make the related efforts challenging. On the one hand, it is difficult to ensure the destinations 

according to the locations where proxy activities occur, as there are generally many points of interest nearby. 

On the other hand, the same POI may be associated with different activities. For example, some people go to 

shopping malls to buy clothes and other goods, but others might want to have meals or meet friends. 
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Additionally, the mapping from actual activities to proxy activities is rather complex.  Given a spatial unit 

and a time interval, suppose there are N persons with M different activities. The numbers of the M activities are 

denoted by A1, A2,…,Am. For a proxy activity denoted by j (e.g., a mobile phone call), the occurrence number is 

Dj=A1P1j+ A2P2j+…+AmPmj, where Pmj denotes the probability of proxy activity j during actual activity m. Pmj 

heavily depends on the actual activity m. For example, people may make many phone calls but seldom check 

in during work time. Figure 9 plots the temporal curves of different activities extracted from the check-in data. 

People are more likely to check in during dining and entertainment, and the numbers of check-ins during other 

activities such as work are considerably small. Researchers have also suggested that the temporal signature 

characteristics of check-in data can help differentiate the POI types (Ye et al., 2011). The above equation does 

not take into account population heterogeneity. Even with the same actual activity, the likelihood that different 

individuals will complete the same proxy activity varies widely. For example, young people are more likely to 

check in on social media. These issues remind us to pay close attention to the representativeness of social 

sensing data. Different social sensing data capture different aspects of the ground truth, just as in the parable of 

the blind men and the elephant. We suggest that integrating multi-source data, including survey data, can lead 

to a better understanding of actual activity patterns. 

 

Figure 9. Temporal variations of activities extracted from check-in data in Shanghai. The check-in data 

explicitly record the type (e.g. restaurant, shopping mall) of place where a user checks in so that we can early 

infer the activity information. 

Beyond capturing activities 

Besides complementing remote sensing data from the temporal activity variation perspective, social sensing 

data can be used to extract movements, social ties, and spatial cognition (majorly from social media data) of 

individuals. At the collective level, social sensing data provide an approach to revealing spatial interactions 

and place semantics. 

Sensing spatial interactions 

Large volumes of spatio-temporally tagged social sensing data lead to the upsurge of human mobility research 

(Lu and Liu 2012; Yue et al. 2014). Different patterns have been identified from various data sources and 
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numerous models were constructed to interpret the observed patterns (e.g., Brockmann, Hufnagel, and Geisel 

2006; González, Hidalgo, and Barabási 2008; Jiang, Yin, and Zhao 2009; Liu et al. 2012a, Noulas et al. 2012). 

It is accepted that human mobility patterns are influenced by factors including distance decay effect, spatial 

heterogeneity, and population heterogeneity. At the collective level, we can aggregate individuals’ or vehicles’ 

trajectories to obtain traffic flows between places. Besides movement, when all individuals have been 

geo-referenced, their connections like mobile phone calls and social ties can be summed up to measure spatial 

interactions from a new perspective. For example, we can measure the interaction strength between two cities 

using the number of follower and followee pairs extracted from a social network site. Hence, ICT (information 

and communications technology) generated geospatial big data also have the capacity to capture spatial 

interactions. Such a property is different from conventional remote sensing data, in which connections between 

pixels are not represented. Figure 10 depicts the top 25 trip flows originating from point A and Hongqiao 

Airport computed using the taxi data. The flow volumes well represent the spatial interactions between places, 

which are 250*250 m
2
 pixels. 

 

Figure 10. Spatial interactions extracted from taxi trajectories in Shanghai. The top 25 trip flows originating 

from two points, one is point A in Figure 1A within downtown and the other is Hongqiao Airport.  

There is a long tradition of research on spatial interaction in geography. Additionally, data sources such as taxi 

data have been used to measure spatial interactions as early as 1970 (Goddard 1970). Large volumes of social 

sensing data obviously produce new opportunities for this topic. Studies aggregating individual movements to 

analyze regional structure from the collective level have also been boosted. Recent literature can be 

categorized into two spatial scales: inter-city scale (Thiemann et al. 2010; Peng et al. 2012; Kang et al. 2013; 

Liu et al. 2014) and intra-city scale (Roth et al. 2011; Gao et al. 2013). At the inter-city scale, the interactions 

between land parcels are influenced by the urban geographical environment. People travel in a city from place 

to place for certain objectives, suggesting that both the relationship between locations and their land uses can 

be revealed from spatial interactions and temporal activity variations. At the intra-city scale, interactions 

extracted from big data help us to uncover regional structures.  

Given a data set, if we partition the study region in to areal units, a spatial interaction network can be formed 

(Batty 2013a). Within this network, areal units can be treated as nodes, while interactions between units are 

denoted by weighted edges. A number of network science methods including centrality computation and 

community detection have been developed and introduced to analyze spatial interaction networks. One of these 

methods, community detection, can identify meaningful sub-networks (sub-regions for spatial networks) with 

relatively dense connections. For regional or national scaled data, community detection studies have found that 

sub-regions that are consistent with administrative boundaries (Ratti et al. 2010; Thiemann et al. 2010; Montis, 



 

 

Caschili, and Chessa 2013; Liu et al. 2014). Community detection methods can also be used to detect highly 

interactive sub-regions of a city. Figure 11A illustrates the community detection results of the network based 

on discretized 1km
2
 grids and the taxi trips flows between them. Most communities are spatially connected, 

indicating the cohesiveness of each zone with strong internal linkages. Additionally, the spatial continuity of 

sub-networks can be attributed to the distance decay effect (Liu et al. 2014), which exists in almost all spatial 

interactions. 

We may compare the community detection results with the classification result (Figure 11B) using the methods 

mentioned in the second section. Both approaches divide the study area into sub-regions, but are conducted 

based on different measures: similarity and connection. The two measures capture different aspects of the 

relatedness between places and are thus widely used in regionalization. This case suggests that social sensing 

data provide more information than temporal variations. Let us revisit the discussion on land use at the 

beginning of this article. Spatial interactions can also help improve land use classifications. Except for 

temporal activity variations, land parcels of different land use types typically have different interaction patterns. 

Take residential land parcels, for example: they may have intense interactions with business land parcels in the 

morning given that people are moving to their work place. These types of spatial interactions may reduce 

misclassification, particularly for pixels with low activity densities or similar temporal patterns. 

  

(A)                                                                          

(B) 

Figure 11. (A) Community detection result of network formed by all taxi flows. The sub-regions have strong 

internal interactions. (B) Classification result using temporally sequenced images of taxi pick-up and drop-off 

distributions (reproduced based on Liu et al. 2012b). 

Sensing place semantics and sentiments 

Traditionally, human geographers, anthropologists, sociologists, and urban planners have been studying 

on a variety of meanings of space and place to particular people (Tuan 1977, Hubbard et al. 2004). The 

concept “sense of place” indicates a unique identity that is deeply felt by local residents and outside 

tourists. With the widely use of web (documents, blogs, photos, videos), amount of user-generated social 

sensing data with geospatial components have been shared by millions of volunteers (Goodchild 2007). 

Such big data offer good opportunities for researchers to study how humans perceive, experience and 

describe the world and consequently to represent place semantics (Rattenbury and Naaman 2009). For 

instance, Crandall et al. (2009) analyzed 60 millions of geo-tagged Flickr photos to identify the 



 

 

top-ranked landmarks on the Earth and introduced integrated classification methods for prediction 

locations from visual, textual and temporal features of the photos. Adam and Mckenzie (2013) applied 

topic modeling on a lot of travel blogs to identify the thematic descriptions which are most associated 

with places around the world. The similar places can be derived based on the extracted thematic topics. A 

traditional challenge work of POI matching (or geospatial conflation) from different data sources can be 

facilitated by integrating multiple spatio-temporal-semantic attributes (McKenzie, Janowicz, and Adams 

2014). Using Foursquare check-ins data, it is possible to explore the neighborhood dynamics (Cranshaw 

et al. 2012) and city-to-city similarity measures (Preoţiuc-Pietro, Cranshaw, and Yano 2013) analog to the 

use of remote sensing and landscape metrics to describe similar urban structures. Furthermore, analytics 

of geo-tagged tweets offer new insights on the geographical distribution of human sentimental 

expressions on places and the temporal changes compared with demographic and health characteristics 

(Dodds et al. 2011; Mitchell et al. 2013). Compared with capturing activities and spatial interactions 

where individuals play a passive sensor role, in sensing place semantics, each individual actively uploads 

and shares his (or her) environmental perceptions, which are also helpful to model both activities and 

social ties. 

The collected geo-tagged photos provide new evidence on the social perspective that few predominant 

semantic tags have characterized a sense of city. Figure 12A visualizes the 200 most frequent tags 

extracted from about 384, 000 Flickr photos in Paris. These tags demonstrate how people perceive and 

annotate the characteristics of Paris, e.g., art, architecture, museum and vacation. Table 2 shows the 

top-20 frequent geo-tagged tags in Paris and they are grouped into geographical context, landmark names, 

place characteristics, urban functions and time based on their different semantic meanings. Figures 12B 

and 12C depict the kernel density estimation (KDE) of the geo-tagged photos associated with Eiffel 

Tower and Seine River. It is clear that the heat maps outline the two places’ influence areas. Such an 

approach can help to understand the place semantics of cities, i.e., we can not only get the spatial 

footprints of places from geo-tagged photos, but also can derive human cognitive and hierarchal 

relationships between places which are captured in such social sensing data. 

 

(A) 



 

 

  

(B)                                                                            (C) 

Figure 12. (A) A word-cloud visualization of 200 most frequent tags using Wordle tool. (B) The KDE of 

geo-tagged photos with Eiffel Tower. (C) The KDE of geo-tagged photos with Seine River. (The grid size 

is 100*100 m
2
). 

Table 2. The top-20 frequent tags extracted from geo-tagged Flickr photos in Paris 

Groups Tags (count) 

Geographical context France (15373), Europe (3909), Île-de-France (1862), city (1249), 

street (923), Disneyland (759) 

Landmark names Louvre (1174), Eiffel Tower (868), Montmartre (755), Seine (721), 

Notre dame (692) 

Place characteristics architecture (1486), art (1406), travel (1341), vacation (801), 

French (689) 

Urban functions museum (1253), concert (1097), church (795),  

Time night (864) 

Goodchild (2011) discussed the idea of formalizing place in the digital world and addressed the 

relationship between the informal world of human discourse and the formal world of digitally represented 

geography. He argued that “perhaps a new field will emerge at this intersection between digital 

technology, social science, and digital data. If it does, the concept of place will clearly occupy a central 

position.” The proposed idea of social sensing might be a potential candidate. 

Related concepts 

At present, a number of similar but different big-data-related concepts have been proposed, such as 

volunteered geographical information (VGI, Goodchild 2007), crowdsourcing geographical information 

(Goodchild and Glennon 2010), and urban computing (Zheng et al. 2013). Aggarwal and Abdelzaher (2011, 

2013) used the term social sensing for data collected from location aware devices, such as GPS (Global 

Positioning System)-enabled vehicles or individuals. Additionally, some scholars have coined alternative terms, 

such as people centric sensing (Campbell et al. 2008) and urban sensing (Lane et al. 2008), that have similar 

meanings. In this section, we would like to discuss these concepts to highlight the value of social sensing in the 

context of geographical studies.  



 

 

Goodchild (2007) introduced the term VGI for geographical data “provided voluntarily by individuals” via 

Web 2.0 techniques. The term highlights the fact that citizens have become participants in web content 

contributions and play a role of sensor. In 2007, smartphones were not widely used and there was few location 

based apps. In the 2007 paper, the two example VGI applications are Wikimapia and OpenStreetMap, both of 

which are web-based. At present, seven years later, various mobile apps, such as apps for Twitter and Flickr, 

make individuals more convenient to contribute geographical information (Elwood, Goodchild, and Sui 2012; 

Li, Goodchild, and Xu 2013). When uploading VGI, an individual plays the role of an active sensor. However, 

for some social sensing data like mobile phone records, all individuals’ role is passive. VGI includes 

conventional spatial data such as street lines and points of interest (POI), which contain little human behavior 

information and are thus excluded from social sensing data. Compared with social sensing, VGI emphasizes 

more on a new data collection approach instead of mining socio-economic characteristics. With regard to 

crowdsourcing geographical information, we suggest that it is a subset of VGI and is always associated with 

particular objectives such as disaster response (Goodchild and Glennon 2010). 

Urban computing is the umbrella term of Microsoft Research Asia for a series of studies that utilize data 

generated inside cities. According to Zheng et al. (2013), the data used in urban computing include 

geographical data, traffic data, mobile phone signals, commuting data, environmental monitoring data, social 

network data, and data about economy, energy and health care. The list obviously covers almost all possible 

data sets, including social sensing data, for studying urban problems. It does not focus on human behavior 

characteristics. As the term itself implies, urban computing pays more attention to various techniques such as 

data acquisition, data management, and service providing. A system implementing urban computing is actually 

a geographical information system for a certain city. On the contrary, social sensing roots in geography and 

thus supports intercity and regional studies (Ratti et al. 2010; Li, Goodchild, and Xu 2013; Liu et al. 2014), 

which are outside the scope of urban computing. 

In the field of information technology (IT), social sensing refers to the integration of social and sensor 

networks (Aggarwal and Abdelzaher 2011, 2013). It pays much attention to hardware platforms for data 

collection techniques such as energy efficient design. From a geographical perspective, the concept social 

sensing extends its implications from the original IT implications to include data management, data analysts, 

and applications, in addition to data acquisition. The narrow sense social sensing is obviously the foundation of 

the broad sense social sensing due to its capacity of providing various data sources. 

After comparing related concepts, we can draw some properties of social sensing. First, social sensing data 

compose an important sector of big data. They capture three aspects of individual level behavior characteristics: 

activity and movement, social tie, and emotion and perception. Hence, for a particular person, his (or her) 

detailed behaviors may be exposed from geospatial big data. It raises the privacy concern: “does big data mean 

big brother?” (Bernstein 2014). It is therefore important for researchers who use social sensing data to adopt 

appropriate protocols to ensure the protection of individual privacy in their studies. The three aspects affect 

each other (e.g. the relationship between friendship and mobility examined by Cho et al. (2011)) and are all 

influenced by socio-economic environments. Second, at the collective level, we can use social sensing data to 

uncover the geographical impacts that influence the observed patterns. Current research focuses on land uses 

(or social functions), spatial interactions, and place semantics. Hence, social sensing also implies a series of 

methods for mining different geospatial big data. In this article, we list several methods for analyzing temporal 

signatures, interactions, and spatial embedded networks. Third, given that social sensing data contain rich 

temporal information, we can monitor temporal variations from the collected data and identify particular 

events (Crampton et al. 2013; Tsou et al. 2013; Croitoru et al. 2013). Last, social sensing serves geographical 



 

 

research at different spatial scales. It indicates that some core theoretical concepts such as scale, spatial 

heterogeneity, and distance decay should be taken into account when dealing with social sensing data.  

 Figure 13 demonstrates a framework of social sensing applications. The inner ring denotes the individual 

level human behavior patterns, and the outer ring contains the collective level patterns. Note that the ecological 

fallacy should be addressed when extending collective level patterns to individual level patterns since a big 

data set covers large volumes of individuals (Liu et al. 2014). Collective level patterns well reflect properties 

of geographical environments. The linkages between the two rings suggest that social sensing may provide a 

new insight into human-environment interactions, the fundamental research topic of geography.  

 

Figure 13. A framework diagram of social sensing applications 

In sum, social sensing refers to a category of spatio-temporally tagged big data that provide an observatory for 

human behavior, as well as the methods and applications based on such big data. The major objective of social 

sensing is to detect socio-economic characteristics in geographical space and thus it can be viewed as a 

complement to remote sensing. Table 3 lists and compares four types of social sensing data that have been 

widely applied towards understanding behaviors. Besides the four types of data, a few studies have also 

introduced bank note records (Brockmann, Hufnagel, and Geisel 2006; Thiemann et al. 2010) and credit card 

records (Krumme et al. 2012) to extract movement information.  

Table 3. Characteristics of four social sensing data sources 

Data Activity Movement Social tie Emotion and 

perception 

Mobile phone 

records 

Mobile phone call Long term (e.g. one 

month) trajectory of 

individuals. Stops 

are locations where 

users make calls and 

the sampling rate is 

low 

Caller and callee N/A** 

vvvSocial Sensing

Activity and 

movement

Social tie 

(or trajectory)

Emotion and 

perception

Place semantics

Spatial interaction
Land use

(Social function)

Patterns about 
human  behavior

Patterns about 
geographical environment



 

 

Ratti et al. 2006; 

Toole et al. 2012; 

Sun et al. 2011; 

Kang et al. 2012b 

González, Hidalgo, 

and Barabási 2008; 

Kang et al. 2012a 

Onnela et al. 2007; 

Kang et al. 2013; 

Gao et al. 2013 

 

Taxi 

trajectories 

Pick up, drop off Detailed short-term 

(e.g. half hour) trip 

trajectory of 

individuals 

N/A* N/A** 

Qi et al. 2011; Liu et 

al. 2012b 

Jiang, Yin, and Zhao 

2009; Liu et al. 

2012a; Yue et al. 

2012 

  

Public 

transportation 

card records 

Pick up, drop off Origin and 

destination of an 

intra-urban trip 

People sharing a 

same bus or metro 

car 

N/A** 

Chen, Chen, and 

Barry 2009; Gong et 

al. 2012 

Roth et al. 2011; 

Long et al. 2012 

Sun et al. 2013  

Social media 

check-in 

records 

Check in Long term trajectory 

of individuals. Stops 

are locations where a 

user posts 

geo-tagged entries 

and the sampling rate 

is very low 

Friendship, follower 

and followee 

Textual 

expressions that 

containing 

emotion and 

perception 

information 

Cranshaw et al. 

2012; Li, Goodchild, 

and Xu 2013 

Noulas et al. 2011; 

Cheng et al. 2011; 

Liu et al. 2014; Wu 

et al. 2014 

Liben-Nowell et al. 

2005 

Rattenbury and 

Naaman 2009; 

Dodds et al. 

2011; Mitchell et 

al. 2013; Gao et 

al. forthcoming 

* individual-level interactions cannot be extracted from taxi data since passengers are without identifiers. 

** data do not contain textual expressions 

Conclusions 

The emergence of big data brings new opportunities and challenges to both GIScience and geography. Kitchin 

(2013) categorized geospatial big data into directed, automated, and volunteered. In all types of geospatial big 

data, individual-level information is recorded. The term “social sensing” proposed in this article has two 

aspects of meaning. First, it follows the concept of volunteered geographical information, where each 

individual plays the role of a sensor (Goodchild 2007). Second, it can be viewed as analogue of remote sensing 

that excels at collectively sensing our socio-economic environments. Social sensing shares much in common 



 

 

with remote sensing. For a social sensing data set, after simple preprocessing, we can obtain a set of 

temporally sequenced images so that conventional remote sensing methods can be utilized. Additionally, since 

social sensing data and remote sensing data capture different aspects of geographical environments, integrating 

these two types of data will be an attractive research topic. 

In terms of individual level behaviors, from social sensing data we can extract information about emotion and 

perception, and social tie in addition to activity and movement. These three aspects cover an individual’s doing, 

feeling, and social relations. From a collective perspective, however, land uses (or social functions), semantics, 

and spatial interactions of places can be obtained. The three aspects interact with each other at both the 

individual and the collective level. Mining the underlying patterns and revealing the geographical impacts 

form two major directions of social sensing applications, which in consequence raise several theoretical topics. 

We suggest that the following aspects are of top priority: data quality and representativeness (Goodchild 

2013b), location anonymization and privacy conservation, spatio-temporal scale, combining multi-source 

social sensing data, and linking individual versus collective level patterns. 

From the perspective of geographical information systems (GIS), social sensing brings three new data types. 

The first is temporal images, which can be used to uncover land uses. Second, large volumes of trajectories can 

be extracted from social sensing data. Although this data type is not emphasized in this article, much research 

has been conducted for analyzing and visualizing trajectories (e.g. Kwan 2000; Lee, Han, and Whang 2007; Li 

and Wong 2014; Kwan, Xiao and Ding forthcoming). Last, interactions between individuals or places help us 

to construct spatially embedded networks so that network science methods can be borrowed to analyze them. 

These three data types all contain temporal semantics, and thus form a key component in the space-time 

integration of GIS and geography (Richardson 2013). A rich number of analytical functions as well as data 

management and visualization tools are in need for GIS. First, while image processing and complex network 

methods can be introduced to images and networks derived from social sensing data, we still lack tools 

supporting trajectories analyses (Goodchild 2013a). Second, even for images and networks, due to the 

characteristics of social sensing data, existing methods sometimes cannot be directly used. For example, 

current network tools seldom take into account node locations. Last, the volumes of social sensing data are 

large and thus raise requirements for high-performance computation (Kwan 2004). A number of emerging 

information technologies such as massively parallel-processing, distributed databases, and cloud based 

infrastructure will definitely benefit the use of social sensing data. 
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